题目

https://leetcode.com/problems/maximum-depth-of-n-ary-tree/

N叉树的最大深度

Given a n-ary tree, find its maximum depth.

The maximum depth is the number of nodes along the longest path from the root node down to the farthest leaf node.

Nary-Tree input serialization is represented in their level order traversal, each group of children is separated by the null value (See examples).

Example 1:

Input: root = [1,null,3,2,4,null,5,6]
Output: 3

Example 2:

Input: root = [1,null,2,3,4,5,null,null,6,7,null,8,null,9,10,null,null,11,null,12,null,13,null,null,14]
Output: 5

思路

可以用BFS/DFS

BFS核心模板

Queue q=new LinkedList

q.add(初始点)

while(!q.isempty){

   q=q.size();

  for(int i=0;i<q;i++){

    cur=q.remove() 提出当前元素

    广度优先遍历,不断加进新元素(q不为空时一直在while,为空时证明已经遍历完成)

    q.add(初始点附近符合要求的节点)

  }

  这里写遍历过程中想记录更改什么

}

代码

BFS

    public int maxDepth(Node root) {
//bfs
if (root==null)
return 0;
int depth=0; Queue<Node> q=new LinkedList<>();
q.offer(root);//加入初始点 while(!q.isEmpty()){
int size=q.size();
for(int i=0;i<size;i++){
Node curNode=q.remove();//提取出当前节点
for(Node child:curNode.children){
q.offer(child);//新加入满足条件的点
}
}
depth++;
}
return depth;
}

DFS

    int max_depth=0;
public int maxDepth(Node root) {
dfs(root,1);
return max_depth;
} public void dfs(Node node,int curDepth){
if (node==null)
return; max_depth=Math.max(max_depth,curDepth); for (Node child:node.children){
dfs(child,curDepth+1);//每次depth+1
} }

[Leetcode 559]N叉树的最大深度Maximum Depth of N-ary Tree DFS/BFS模板的更多相关文章

  1. Java实现 LeetCode 559 N叉树的最大深度(遍历树,其实和便利二叉树一样,代码简短(●ˇ∀ˇ●))

    559. N叉树的最大深度 给定一个 N 叉树,找到其最大深度. 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数. 例如,给定一个 3叉树 : 我们应返回其最大深度,3. 说明: 树的深度不 ...

  2. Leetcode 559. N叉树的最大深度

    题目链接 https://leetcode-cn.com/problems/maximum-depth-of-n-ary-tree/description/ 题目描述 给定一个N叉树,找到其最大深度. ...

  3. Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree)

    Leetcode之深度优先搜索(DFS)专题-559. N叉树的最大深度(Maximum Depth of N-ary Tree) 深度优先搜索的解题详细介绍,点击 给定一个 N 叉树,找到其最大深度 ...

  4. LeetCode 104. 二叉树的最大深度(Maximum Depth of Binary Tree)

    104. 二叉树的最大深度 104. Maximum Depth of Binary Tree 题目描述 给定一个二叉树,找出其最大深度. 二叉树的深度为根节点到最远叶子节点的最长路径上的节点数. 说 ...

  5. LeetCode:N叉树的最大深度【559】

    LeetCode:N叉树的最大深度[559] 题目描述 给定一个N叉树,找到其最大深度. 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数. 例如,给定一个 3叉树 : 我们应返回其最大深度, ...

  6. Leetcode:559. N叉树的最大深度

    Leetcode:559. N叉树的最大深度 Leetcode:559. N叉树的最大深度 Talk is cheap . Show me the code . /* // Definition fo ...

  7. [LeetCode] 559. Maximum Depth of N-ary Tree_Easy tag: DFS

    Given a n-ary tree, find its maximum depth. The maximum depth is the number of nodes along the longe ...

  8. [Swift]LeetCode104. 二叉树的最大深度 | Maximum Depth of Binary Tree

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  9. [LeetCode] 104. Maximum Depth of Binary Tree_Easy tag: DFS

    Given a binary tree, find its maximum depth. The maximum depth is the number of nodes along the long ...

  10. 559. N叉树的最大深度

    给定一个 N 叉树,找到其最大深度. 最大深度是指从根节点到最远叶子节点的最长路径上的节点总数. 例如,给定一个 3叉树 : 我们应返回其最大深度,3. 说明: 树的深度不会超过 1000. 树的节点 ...

随机推荐

  1. WPF textbox实现单击全选

  2. yaml文件读取转化为类

    首先你要有一个文件读取的方法,写一个根据传入路径 + 类来自动返回对应类的方法. /** * 根据传入的path,加载配置文件内容到对应class中 */ public static <T> ...

  3. Git克隆项目到本地

    刚进公司实习,居然不知道Git怎么克隆项目到本地,组长丢给我一个TFS账号(Azure DevOps就是以前的TFS) 1.首先在本地选择一个文件目录,选择Git Bash Here 打开一个Git ...

  4. MFC程序运行原理初探

    几年前,写过一段时间的MFC,但是只知其然不知其所以然,最近闲来无事,研究了一下MFC程序的运行顺序,特此记录一下. 首先,如果我们创建一个MFC程序的话,首先会自动生成一个CWinApp的子类,程序 ...

  5. Mule获取Http参数

  6. RayLink测评 | 完全免费,功能超越同类付费远程控制软件!!

    *本文转载自自媒体[下1个好软件],作者:锋哥. 远程控制软件目前的需求非常大,因为某些原因,你可能得居家办公远程控制公司的电脑,又或者出差不再需要带笨重的笔记本办公,一台平板电脑远程就搞定等等. 但 ...

  7. JMM(Java内存模型)笔记

    JMM介绍1.什么是JMM?2.JMM的三大特性:1.原子性2.可见性3.有序性3.关于同步的规定:4.解释说明JMM中的八种操作:1.什么是JMM?​ JMM 是Java内存模型( Java Mem ...

  8. Es6中模块引入的相关内容

    注意:AMD规范和commonJS规范 1.相同点:都是为了模块化. 2.不同点:AMD规范则是非同步加载模块,允许指定回调函数.CommonJS规范加载模块是同步的,也就是说,只有加载完成,才能执行 ...

  9. VUE学习-基础(基础语法 & 模板语法)

    基础语法 引入vue <!-- 开发环境版本,包含了有帮助的命令行警告 --> <script src="https://cdn.jsdelivr.net/npm/vue/ ...

  10. mycat分片的十四种算法

    MyCat的分片规则配置在 conf目录下的 rule.xml文件中定义 ; 环境准备 : schema.xml中的内容做好备份 , 并配置 逻辑库; <schema name="PA ...