Pie

Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 6158    Accepted Submission(s):
2343

Problem Description
My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.

My
friends are very annoying and if one of them gets a bigger piece than the
others, they start complaining. Therefore all of them should get equally sized
(but not necessarily equally shaped) pieces, even if this leads to some pie
getting spoiled (which is better than spoiling the party). Of course, I want a
piece of pie for myself too, and that piece should also be of the same size.

What is the largest possible piece size all of us can get? All the pies
are cylindrical in shape and they all have the same height 1, but the radii of
the pies can be different.

 



Input
One line with a positive integer: the number of test
cases. Then for each test case:
---One line with two integers N and F with 1
<= N, F <= 10 000: the number of pies and the number of friends.
---One
line with N integers ri with 1 <= ri <= 10 000: the radii of the
pies.
 



Output
For each test case, output one line with the largest
possible volume V such that me and my friends can all get a pie piece of size V.
The answer should be given as a floating point number with an absolute error of
at most 10^(-3).
 



Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
 



Sample Output
25.1327
3.1416
50.2655
 
 
 
这一题大意是:总共有m个蛋糕,要分给K+1个人,求能分给每个人,且面积最大的蛋糕面积!
用二分法来查找!
 
 
 
 #include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define PI acos(-1.0)//PI的精度最好大点
using namespace std; double L[] , man;
int n,k,i; bool F(double x)
{
int sum=;
for(i=;i<n;i++)
sum+=(int)(L[i]/x);//sum的作用是记录当要求的面积为x时,最多能分多少整块
return sum>=(k+);//如果能分的比要求的多就返回真
}
void qw()
{
double l=,r=man,mid;
while(r-l>1e-)//二分法
{
mid=(l+r)/;
if(F(mid))
l=mid;
else
r=mid;
}
printf("%.4lf\n",r);
}
int main()
{
int N,T;
scanf("%d",&N);
while(N--)
{
scanf("%d%d",&n,&k);
man =;
for(i=;i<n;i++){
scanf("%d",&T);
L[i] = PI*T*T; if(man < L[i]) man = L[i];//找出最大的蛋糕面积
}
qw();
}
return ;
}
 

Pie--hdu1969(二分法)的更多相关文章

  1. 分派pie(二分法)

    2.问题描述 我的生日要到了!根据习俗,我需要将一些派分给大家.我有N个不同口味.不同大小的派.有F个朋友会来参加我的派对,每个人会拿到一块派(必须一个派的一块,不能由几个派的小块拼成:可以是一整个派 ...

  2. HDU 1969 Pie(二分法)

    My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N ...

  3. UVA 12097 LA 3635 Pie(二分法)

    Pie My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have a numbe ...

  4. UVALive 3635 Pie(二分法)

    简单的二分法应用,循环1000次精度就满足要求了. #include<iostream> #include<cstdio> #include<cstdlib> #i ...

  5. hdu 1969 Pie (二分法)

    Pie Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submiss ...

  6. 二分法经典习题——HDU1969

    #include <iostream>#include <cmath>#include <iomanip>using namespace std; double p ...

  7. HDU1969:Pie(二分)

    Pie Time Limit : 5000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissio ...

  8. Hdu1969 Pie 2017-01-17 13:12 33人阅读 评论(0) 收藏

    Pie Time Limit : 5000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissio ...

  9. POJ 3122 pie (二分法)

    Description My birthday is coming up and traditionally I'm serving pie. Not just one pie, no, I have ...

  10. POJ-3122.Pie(二分法最大化平均值)

    二分法的主题思路就是逐步逼近,所以这道题的思路自然一目了然,做题思路也是... 本题大意:题主过生日,它买了N块半径为R[ i ],高为1的圆柱形蛋糕,现在他要将这N块蛋糕等分给F + 1个人,为了好 ...

随机推荐

  1. HTML5 canvas 在线画笔绘图工具(一)

    HTML5 canvas 在线画笔绘图工具(一) 功能介绍 这是我用Javascript写的第一个程序,在写的过程中走了很多弯路,所以写完之后想分享出来,给与我一样的初学者做为学习的参考,同时在编写这 ...

  2. PROCEDURE_监测系统_数据备份存储过程—备份原始数据,每十分钟一条,取平均值

    create or replace procedure proc_backup_originaldata(retCode out varchar2, -- 返回码                    ...

  3. connectionStrings基本配置

    常用connectionStrings配置: <connectionStrings>   <add       name="LocalSqlServer"     ...

  4. NFC应用(三)点对点(P2P)通信

    点对点(P2P)模式允许两个NFC设备之间建立通信链接并交换数据,与读写器.卡模式不一样的就是,P2P模式下数据交互是双向的. P2P遵循ISO18092规范,建立链接后使用NDEF(NFC Data ...

  5. javascript之尺寸,位置,溢出

    一.offsetWidth:元素的宽度,包括边框,内容,内边距. 二.offsetHeight:元素的高度,包括边框,内容,内边距. 三.offsetLeft:元素的X坐标(相对于最近已定位的祖先元素 ...

  6. 关于oracle动态视图v$datafile和v$datafile_header(转)

    v$datafile是从oracle的控制文件中获得的数据文件的信息v$datafile_header是从数据文件的头部在正常运行下,两者的检查点SCN值是一致的,但当datafile出现损坏时可以用 ...

  7. poj 1703(带权并查集)

    Find them, Catch them Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 31840   Accepted: ...

  8. Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008

    Oleg Sych - » Pros and Cons of T4 in Visual Studio 2008 Pros and Cons of T4 in Visual Studio 2008 Po ...

  9. IOS 排序算法

    /** * @brief 冒泡排序法 * * @param arr 需要排序的数组 */ -(void)BubbleSort:(NSMutableArray *)arr { // 取第一个与其邻接的对 ...

  10. android面试题集1

    Android 面试题(有详细答案) 附带答案,共100分 一.选择题(30题,每题1.5分,共45分) 1.java.io包中定义了多个流类型来实现输入和输出功能,可以从不同的角度对其进行分类,按功 ...