题目

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAisAAABKCAYAAAB6mRT+AAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABGbSURBVHhe7Z0LjyO5DYRv88cP98uTFLIFFBiSerS6p+2tDxAs8VGkJK/RmJvx/fr3f/nLGGOMMeal/Ov3qzHGGGPMK/HDijHGGGNejR9WjDHGGPNq/LBijDHGmFfjhxVjjDHGvJqve1j59evX79lns7OPlZwqlvZOa5Rr/h+cjZ7PzFkxxudqIj/xnkBNrTvTA2Oe6jfWma1bxXX5mU9ts7UJ41fzOqC1MiKzNmXk3+WVDys8uJlh/gfO4uRfoUNLz7c6a99BDc6GA+eZ3c/M+cW7yNBaOoy5gr6Xfuo93I0ZdnJ+kpmzWoF3xvuLa87fzkd/zwouNLaf2UB2+W/dOvdQ7YVke6rIzkmhv6sZ+4qxXe6fTHYuahv5FdgjmQ7nWTzItM0zVHcL4n11cU/eYVZPbSO/AntkZS9Rt+qjiyOwzZLldrbM37EaP0PVD+eVH2jMiJg3g+bMMPWwosVjeOe7Gx4myQ6J/ix2pd8qnjVXfRUrfXY+JYtTG+YdiOtiKp2Z3kjW41UqTfa56tsl62O0X/V3sVVcl9/pVezk7IA65Bvrge4s1ce59pjx1DnFOt0+QLaXjJFOpOtl9FpR+TM7bAr1CeNHthmynlZg/6O6jNF6cU0qO+h8Vxk+rHQb6HxXmNWp6mf5VewIxJFOs9NfqZXFrdojMY7r+Kq+CvhJphnnIyq9K3SaXZ+dbxXtYRatDWZ6iT0rVX6nF1HN2ZxdrvS5w9P1AM+zqqM9dP082esK2jvY2UtVt9OirfN1VDFd7qjWyB/pfLus9KB2zAHWnHcwbiV+la/5BVs96JNAM9ON9TDnJXW+ipij8V0+7KNRQV3W5bzK0dgubgXoUDMDNTg61F9pIkbtmDOv8+2AfI647myxj1VU6wSn9f5krt7t0/Du2bOuO9uJfWa6HVWM9jL69wx/HD/FydrZnqKNdoB5PE/eA+1xDeKca87VtsPwYaUTv1J4RDzIbCh39nIn3Muof/irfY+GwlpRZ0TWI3V2NUdQl4O1Yh3GfSq6n0/ex1We3jvr8T11Z/0VffajxPXb0P7e8h5eOXOA2Dhmye4MZHbaMl9GjJ8Ziu5F9xZtROdXgVbsZ5eln6ygaLWRzrcDtGYG4SXxYOL6rcR9dKzEVjAfrzgbrnVOn5LFAcx1fYpYB7AWBvwcd9Q/DXu9m6wOzwvg9VPO66k+UUfP6KdhP8ob+kP9t5xRhvbGOXuO6wyN7eIUxmR3Bqq7rOIzNH52RNin7k1tI7IcXYPOX61XmH5YgXB2CKDzPUW8qLj+Vnjp3ciAnWejc4K15qoW5+o/zeje4Od4Mzyjqlf4T+7hE85kxOkz+Wk+fT9Pv4d3iD2wVx1qz9DYLg619ExOc/o8VY/74qCN+8nQuDjPbDrPhvpXmHpY6Q7v9MGaNXjp3YjonXX3BzvfxKql8z8NnAfPpINxP3lO2iv6uKsfrXOVmR5P1ZvROFGLZ69aO5qzd6d1rkCdO94zI1ibo6PqcZS3C2rFelWflf1JqrPRvkZ3DP/MPhCjWif3PnxY6YrPNAZbZr8L9nR3zViDdUHn+2liL6O+1K97yuC+37LXCPsj2mvn2wG5XT7rMUZr78B8vHI+6uFt6HmAq2fyJngX3F93L3qHP4n2mwGf3tnJnllbR0Xlg73riefMGF1X9oqqx8qewX4Z39W7CvtizRlifzOs6I+Y/skKR6TzPUFVNzuknV41PuayBka8wM73k8RzqeYgrpF7el/UivMrdJpd/zN7O7FnwBp4PQG0dER26yGeOTpXsnq7sEZWh5yqx/PgyHRP7g1wX6P9Xal7uucKnlm3lx1O9t9pwccR15X9FDgznh+56zwJteOYBbEz/ak2Y7P1Kq/8BltsZLYtjY15s743MtMfYmbp9q7rzgdYE7YqNtq/iZ29VedEsAZVTFez8nX5nd4Op/VGPFnv6b3N0vV1R89RM1uDKqbrqfNl7GpVvlH9lTy1jfxKtGMNstgVqnoZWQ9cn+xvpSdl6a+BngIbwYZmBsE8HoCuO98ng32MhpKd0ww8b9XEK+9AddX+TegeZ0B8PIdMY0WTZNoZVb2Z3Bky/Tt5st7Te5sBPXV3d7rnrF5WY6dmpt2xGk+6PNhHvcOv+Z1eR1Urs++cZwX7HY0K+LL+MEa5CmN39/bR/28gY4wxxnw/r/zJijHGGGMM8cOKMcYYY16NH1aMMcYY82r8sGKMMcaYV+OHFWOMMca8Gj+sGGOMMebV+GHFGGOMMa/GDyvGGGOMeTV+WDHGGGPMq/nqh5XZrwEGVezKVwmvgpzVvCt1ujHDbByoYlc0jBnh99OYK2c0k/tt/9ZX+v62vb+ZV33d/s4Fd+1Db9Y/Mx8xE4sYMqurdH0qqj3qK/NHvY6qn9H8KlWP0O985rvge6q6c/Kn3v3Mv7kq5o5c2DNGdZ5itGf1z8yvAq0M6He+b+PV/2+geOErbwDGjnJiXIwf5e+S1clgTPTHXqs5qLQVja+IuhmMia9kRmOWTKuqC07W/tP5tLP8k+9+du+Mw2uHamXaVX6VN6ob9e9Ee+nqxrgYP8pfIdOq6oKTtd/EVz6szObBXsH4GFPZO6raox47W5ff+TIqP+wjYp0K7U3p+hqR9U1b5zvBSS0APXKyR3KyV3B6/zus9LDa7x37qzRhB6u+DMbPorqxv6pfov4stsuvcmNOp3Ga2dqwV+g+lCt7yPqgrfPNshr/U7zuYQUHN0vWenXw3YVoTY3RnC6/IuZoHQUxmX5ny7S5znwjYp2MqFuh9WZ73KHaF3Qz/dmaXZzWXOl/pKm+U32e1iSIATN6YLb2Kiu6K/snp3ruNLWv2GPnq8jiqtxOc6Y27Apioi2imkpVq6p9mqpOV1/3UPV8on+to0A305+tqbpXe3yCV/6CLQ6Oh8d5XGfES4qXoWuiOVXMDrEXgDWHrkdAi4NrvnJOsI6arNMNhbpxjHwAc+rhVX13oHtg3RPEfZErdSrNKzytCfvO/u/oU6F+HKuM7ndWW/2VJmLUjjnzOt9bQE/sMXuNI1LZnyaetZ4z7Nm5a04VcxLU0HGCkRb2xNFx997JV/w1EA90dInw6+FnORrD+SqZrrKqCS2OuKYtg/tYGSBq67qzIZ9zgjW1Of9p2E81lMyWofnZUKItnhnR/Gwo0aZ3ghHX1VCiDfOsV8ZVQ8lsp0BvOk6DvlWfe4n7YdwbYC+xR4V7YIy+xjnXBOu4V62nr3eeCfS1FucdjBv1xf1QM8vRGM4/Ge6Dg3uL+2LcCM3NdGZ45X8GYks6B50vYyYGdHH0ndAiiCGMzfKirdNWXxcHRn6CuIxR7kyfsz10dP1l+rM1VbeKX+1/RhOs6M5qglndTlM17upzhVE/u/2CGD/Kh59UcTOatHW+Do2J8atrsmJf0VSynCq3gprMWc0ns3ldHH27PSjQyKj0V2vG+FG+9rNaBzBntc/X/mSFG+EG4/oE0FJ9Xe+A3NHha8zKfhiHVx0zzMZF0B+HrknU1Z44jzGnib1pf1c4qUVGmjir1ZpP9bnTm3JHn08y6p37e8ses/vC+vS/R+hxgJUad5zXab0M3S/ns3vehfvimd25z5H2lR6u9P3KhxVcPDeF12x9AmipLuc7aI8rzOTE/XNcAZo6Ipm/shHta7dH1Z4FdVZzOnb6HjHSRP+rdbv43fOoNGHn3VB7tsbsvlR7B+Zf1fl0sPfRPXboGTI2s0FLB4jxOuc6Q/3skZpvQ/er8xVG55GBOqs538Rrf8GWZG/anTdHxejy+Qbpao78ZEZHB9GczL8DNHVEop8xmU0Z9YUcxGS5u1Cvqg37qK+fJJ7HW3tFjxxcvwXtTcebQX961/o+6HwjRnEzfh2VLSPG6Jo27guvnKv/E9C7ycBeVu5sBupVtWEf9fXJvP4XbO9+A0OfbwC+GWZZzRnFsReOjM6/s4cOaFXQF2uxt91eVuO1ButGYOe4CvcV51eh1ik9ngXHib0T9niqV3Kyx114XnF+hU5T7ynuv/O9CfaoaM/RB7uOCHNjXgdjq9fTsHfoY2T76FiN1xqsG4GdYwb2Hud3oHWy1xle/Qu2HTNxK1oAsTGH68rOOVD/iKg3A+so2kOmR7v6Z2pnMdFW6cAO4KtyutzMntHFruiYd7B6Z6feK9/E7plwnuVXmrCDmfhKA6gvxnV5dzFbE3EAsVXfldZsDdDFruh8Oh/3sAI/GbU+qxVjmBfzKzuhXkZVY4WqnzgnWfwIxHd5XQ3GVTGZbre+wkktcz879zWbgzjwJ7wfZs6E5wEQG3PUX1HVqOp3fdG3k3sHo3rwgxhT7WO0vsJJrbfz6q/bN8YYY4z5ii+FM8YYY8z34ocVY4wxxrwaP6wYY4wx5tX4YcUYY4wxr8YPK8YYY4x5NX5YMcYYY8yr8cOKMcYYY16NH1aMMcYY82r8sGKMMcaYV+NvsP0gsq9WXv265Tu/+jnjqn6VD/sqXR8rfWaxo/yZfmfq393nSa7u+WqvT+7VGHMvH/mTlZkPwQzk7eae4krvow/euL8455rzuFY0phqnmNGKMTgLHdEW17TNcHJvSuxHx7eS7ZXjbfB9fdf9G2P2+bifrOCDZKVl/eB5y1Z39qDxuh7tr8sFcU0qOxn5ydU4tXda0Tdbl8zmd/ZI1Bsx029VP7Lb50mu7LnL7frVfVfzjOgfxRtjnuWjHlZmP0AQR65ur6rJGqs+srOXCPKjzqzuiJHOSv9X4rp8+GahxkoO6XLhy3qMtixGGfnJTBxiIsjJcmfr7jDSrvzsf6dXjYnxXb2sFhjVM8Y8w9f8gi0+XDjwAcOxC7UytEaM6Xw7UCuOEVlfo/GTcE9ZT5mN6HlwHteKxugY+Ui0o58YUxH3oSOSxWCMfORKnyeJPerIgJ19awztHaOYqKlU9hX++eef3zNjzGk+5mFl5oOIA7Ecu1ArEvtgPdD5Ip1vBtahDgeJ+lhrTraOqG4cK6zkx96A2tS+S1dfmYmb7SfuIRtK5scY+SpG/juI/WUjojbM+X7hvIIxI0Y6xph38pV/uowPJA5+2H3yB5TuIduL7heD6HyVTDOzzRDzNLfakzLy0c95XEdQP7Mr8GufIyo99rAyKuCb6b1jN1d703kG/SsjQjvfL5xndL4ZWIOwn5Gmf5JizHN8/fes8IMIgx+An4juQ4n7qda6d84z39NkewLoh3a8Zv0xlyOzcXToOfC1yoGPQ0F8tAHqsI9sHccJVvscwb6Qyz4rHfrjGPnYr9agna86CONGMKeLn4kBflAx5lk+5hds8SEy8yEDTm4p1s36oK3zZXQ+BXER5qlGVz++kpGdxPUss3lVPbXH+SpZH7GO1ohEX7eO8wh8lb2CmqqdEf3deqSljHQjq/EZWc6sjsat5IAutnpQ+fvvv3/PjDGn8V8DDYg1sx5o63yRyp4RY3WNOelqc15pVXaCdYbGZESdCo2r5qDSy+xVLKnqzNbo9Ds9rnf1wF2xHSu6IIuPdH2B6B/VzFjJqepG+MDiBxRjnsG/s7IINQnm/GDrfFeBFkcENWbqsB9qxPUI1tFxGva0Qtb/SKfzwz57JrNAj4NoHbyu7vsTwR51RHhG9Ot57ZzRag7rjvBDijHP8vVfCqfwg28mXz8kieZ1WqM6q3uI8bqufF1Oxih+lF8xm1fFrdRFLKlyGBP9WZ0YG2OyHKK+OCeVbqTyz9o7/VFtgjiC+LjOWOmjg7VWcndywG6eMeZePu4nK/gQ4QfKKsid/RBirA4ls5HOt/uB/STscfecV+nqzZwV8qjBQVvUpH+GLLbSrWAcc6jHV9oqPc2JjPI4ToBaHNk6wr6v1Gf/XZ3ITo4x5v183E9W/kT44cs50GujjWRXqhqK5sIf46J2BvNWOVVP8zNiDeWKTqZLvU6LeZkeoI/zETE20406K/qrZPVHID7GzfameXfsxxjz8/hhxRhjjDGv5uu/Z8UYY4wxn40fVowxxhjzavywYowxxphX44cVY4wxxrwaP6wYY4wx5sX89dd/AFTsG2aqgjKxAAAAAElFTkSuQmCC" alt="" />

解决代码及点评


#include <stdio.h>
#include <stdlib.h>
/*
22. 已知 100个自然数 1~100,我们取 1, 2, 3, 4时,
我们可将其排成一圈使每两个数之和都是素数,即→1→2→3→4→,
问 1~100内连续取 n个数,即 1~ n(≤ 100)能满足上述要求的最大的 n是多少?
*/
void main()
{
int a[100];
int b[100]={0};
int max=b[0];//定义b中的最大值
for (int i=0;i<100;i++) // 开始给a赋初始值
{
a[i]=i+1;
}
for (int i=0;i<100;i++)
{
int n=1;//存储n的数值
int wei=i+1;
for (int j=2;j<i+1;j++)
{
if ((a[i]+a[i+1])%j!=0)
{
n++;
if ((a[i+1]+a[i+1-n])%j!=0)
{
b[i]=n;//将n存到数组b中
}
else
{
continue;
}
}
} } for (int i=0;i<100;i++) /// 输出在b[i]中记录的最大值
{ if (max<b[i])
{
max=b[i];
}
}
printf("%d",max);
system("pause");
}

代码编译以及运行

由于资源上传太多,资源频道经常被锁定无法上传资源,同学们可以打开VS2013自己创建工程,步骤如下:

1)新建工程

2)选择工程

3)创建完工程如下图:

4)增加文件,右键点击项目

5)在弹出菜单里做以下选择

6)添加文件

7)拷贝代码与运行

程序运行结果

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAqUAAAG6CAYAAAAxsD/hAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAACOpSURBVHhe7d0JnGVVfSfwf/UmiyDdSq8kExNFCd3QrLKIIg00SuMSjQaX4DZJiEkIoKAkTpwPAcUgQnRCNGJa4ppkdBIRVLZGhUhkky1Gh0kYpFeaZhHoveae++6tvvX6vldV3XQdRr/fyp937znn3nPeff1J/bzvVdXAp878h8Hbv3p71B6ce1e1BQAAO8YFF32m2uoYuPcnKwa/+9ffiSt+fHkMDAzEK45ZEEcdvTCmT59RDQEAgKfHurU/i3vuui0+e9llMTg4OBROy1B69hnvjqlTp8V7TjsrnowpZQcAAOwos3afEuef+99izZqHy2BahtL3n/lf40/+7MPx5MCzqmEAALBjzdptcpx15h/GRz72NzFw0kknDR5++FFxxAm/UXUDAMD4WP7j2+MLX7i8E0r/7Ny/iCcGJ1ddAAAwPl78S9Pj3e94cyeUfuZvvxg/+umqqgsAAMbHi/faswylE6r9GFBKKaWUUmqcqzZ0p/THDz5UNQEAwPjYe87zhr99/5Olq6suAAAYHy+c/dzhofR/L3u46gIA+PnwxONPxI///T9izZrHq5Ydb+rU3WLvFz0/dt1t13LfGjpr6OUFs6aNLZRe809fqrbG5ldfNC9+Ze9fjwkThj6+CgAwLm767m0xf79fi+kznlu17HgrV6yOO+68L4446sBy3xo6a+hlq1B63/I1VVe7gSdWVFvtJgwMxMCEgRgcjPJPRqVKvn31tfHSha+NnXfepdwHABgv1377plh04kvj4ceerFp2vGm77xJXfON7seD4I8p9a+isoZdfmzm166fvU6jsU/vPn9+35u2/f8ydt1/M22+/2K/YrttLRUBtO+czrh66Nv7HORfGdx5q6dvR1Zz7mbKOtv4dWqviO584I/7x3rY+pZRSatuqvHE2jtU23zN1DfWPwG/Zr/ravsq+NLz5WB1Tf1X7qUb7nGtDd0r/Y+WjVVO7g/eeGUtuuCc+dcOPY8KkzTFh8mBMmLIpJhZ1weuPjWnTplYjOxac8ZW49qI3xUcuvCSOWvja2GXXZ1c9tZVxwyXnx7eXVbulg+ItH3lb/Hq1t8Vd8Q/vvyqmn3lWvHzPqqm09Tnm//bF8Ztbn2B0Vl0dn/jY7bHfVvM8nXo8l+bcMR7r6KH7GpT734jlnd7q+o7+9ej9mrbpHL/yuO14DVv1Wm+S+i6LO8rt2XF8Y8y9X/nj+MLtne3SrBPj9NOOi+el7dbrUu306wNgXF3zrRvjpJNeNu53CL/+9e/EsQuPLPdHu4abliyJ275/c7XX24GHvSSOOProaq9dzzU8+kSxl97N3hIGOwaLr4H4lxvSGv61aktzHRpHvOzouOmGG+K2m7esrVzDy19evkPeyZWdd8gHB1PQ7OxO22PXYWvo5fnTnzP87fv/XPVY1dXu4BfOiOuLUPrPP3ogJqZAOnlTUZuL7U1x2lFH9g2lLzvhde2h9OLzYsVxl8Qb962a7rk8zrn81uKbeKOtsur6C+LL8Y74w1dMr1qSdI6/jXjL2VsC1IW3xX7vrfbHXctzatH+XJ6J7oq/v3h5vOKPj4vycpbXd1ksuOC3Y8+er8foX9Otje76bYve/37Oizv3/5NOe7nWiLcWzy9lyHu/clpcO73qG6b3dfn1vn0AjLcUxl696KhY87O1VcuON/XZO8U/X/HdYYFwNGu45PwPx1e++FfVXm9vevPvx2nnfKDaa9drDauHBeMqPZZbA2Us/cRHLoh//MqnyrbkDW/63TioCKC3FmG5u/0P3392tdfuuUUwbq6hl1/Zc/fhb9+nW6z96om168txU/eYHP/n4eXxb6v+b/zoofvj31f/Z9mepKdVf5Z0z3lb/kJU2/kmFNeheChv2w61zT0lPvLeRbHi8r+Lf2u2FzVj7oERd/4wVg9rr85RfJX704+PYw9cGnfes7IxZjyr5Tm1VPtzeSbWfvFbpx8fM+r96fvH/rOXxUOrRng9mm19XtOta3TXb1uqdb2rfhh3Ljs4jj1mRmd/7glxwuxb4557O/3FUorFtP377X1d+vcppZQa7yoVj2lr3Kqad9gaCmkV/b7Gonlc+1dHcw3pZ38GJkwo19d5TGtNj522CcXjQYcfVgbOzZs3l/X3X7q0DKTpsW4rg2oxrjxfcUw6Lv1Ae6c685XnTN/YC/UaelVty2dKy4X2qWrczff/JDZOfjIm77wxJu+0ISYVlaRbvmlM/ULM/C8PlI9J6/nqmYvxw9pnpm/it8Td6XOFD10dl5x1QSxJn29M7XFFXJfah52jmK95fNU0MGFFLLn4j+Ir994VXznrj+L9F18dD5Vjqv2hujzurY8t52vsd429ZMmKqr2t7+pi/7z45tKI2z9XtFXzPbTkgqExQ3O1PZfm3MPWkeYprsGSyxtz9VpHNW7oufaYP1U5R92erlOzvXkNmrUyViydHdNnFts9X490/ZttRTVf07Kt13Wtjx/e33NtW621z7VovebLY9mBB8TcoeNnFs8tYvmqaj3FUpZddV51vl7XJFXjuoypr/06dF6zLfPd++Wi/8t39T1GKaVUe5XfVsrbZml7fGowPaSt5hrSdvr+2Kea0t3Q7mpqO75ZxX864xprSCYW7WV4rB4nFn2pypBaPB51zDFx8BGHxxtPPjU2bdpU1pc+/8mh7dSe+tO4CQMTyxCajqsDZieMdsJprV5Dr6ptCaXliXpX8Z9y3FAYfdaG4nF9TH5W5w5q45yli4+5oNrqde5i0Z3Ovu2dzbQ9K45ZeEjcfued1f6WsUP7q66Oq2+bE/PnzRrqu33xHbHfxz4ZHz1zYUwfuDO+/N6/ieWv+mB8NLWlesdAXP7eIgBU5yjOVp0vjb0yZp5djfvYB2P+HefFl++p+4af5/QFC+PkYswrZ0cc8I6iLc1XrOcLV86OU+q5Pvb2mFueu+25NOdubheb8WB8c/kBnXOc/eqIKxfHklWpr7OOSPOV539nDNxxy5Zje86/MpZcMxBvrdvfUaxlcds1GF73fjE951f2eQ6jeU37Xdeu12wUa9uyP8K1aFnvQys7H36t98sqW4p1FNtz31Kf65Pxvlcti8svKgJuc2xVw6/LaPt6X4fpCz4Qpxx4S1x93coYuOfyuHz5q+N9b9m/7zHDz62UUqqu4j9F8CnC08T+deOSJXHx+eePWGlc2/HDqvh+Vs7bXEP6HlcGv96VrF69uqzkjA9+cKiSZl/b8d3Vuobisb6rWYbCekwxvA6rLztmQRxSBM+T3/oHsWbNmqFK+6n9qAVFIK0C5ZZzbamhtq7r0KtqnStQaBvUrFq6Mzq5DqRT1seUKevK9sHNm8vHVi3nq8/Z3j4nZqY7SzMWxhkXnRPHzKj65h0QB952R9wzbOyDcdUFfxBnnVnUBbfG/A9sGZ8c+M46iBV1zx1x++xXx9uOnTl0/MC8VxZB8gdxV/rGXl+Nemzz3GeeG1ctjVi+MgWFlvNU1Tm82p8xM2bFD+JzZ344ru/+afbu59Kcu7mdqrger1w4v7M9Y37ML4Jv+l8B9TqOm1eNG5gZx5xwSHVoGttr/mLcWxfGwHUf7jy3v/1BeUzRsfXcVd3zxT+Izw38Tpwx7Nq1vR7V3F019Jr2u67luK7XrNfrk6r79ep3LVJ1rXf6zOJC1n1Vlam0qy3V9GNPjAOX3hp3d72OrddlFH0jXYe5b/2dmHXlucVrszReeUr6H1QjH6OUUmrr6nwfKB/6+sFNN5WfmRyp0rgRVfM115Da0la/StatW1dWctG55w5V0uxrO75ZtWFrKHRCY2pLAXRiuV+2pbueaezECfG9668rnue/xMcv/NOhOVOl/dR+43XXF+coxqdQWhxTHleH1HI7BdLGnKmtT9Xqb+utg5pVK8NoGUjXlXdJJ03pvH1/5933xJ133V1W+ljp2mLxTz31VNnXdr5OlZ3D2+65Kq4aODjmTe9qL2t+7H/QDzp3kIba5sSrPvBXceHHU/1JLBh2XPf5O/vD21IVgSkF2fIr5b3UVmzMeU2cVZ53S51ZBoxe56mOG9qeH28uj3t3DFz+nnjfGefH9eUdzk7fsOfSnLu5XVRStlX7qamznzrSzvC+LW095l/17fj4Ge+Jzw+8u/O8PvCa6OTcoq/82jJ3qnu/8J74XPxuXPjWKhgPVdvr0Zl/2Lhhr2nR3/O6Vv31cUNVtXWvbdh+Z0w5bqi627rXW/QvXxGrhvpXxqrlEbNmtoTIopJia2i/93Xp39ep4mR9r0NnvqTYG/UxSimluqr4f53lT7ukjX5VuO+++0asUtvxjRrabKwhVbHTvwrr168v64Lzz9qq6r5S2/HDqvy/YrOzhlq6g1mkxk6gLKu6q1mFyu9ec1386403DZvv9Pf++dB2ak/937n22uL7byfQdkJtVeV257y1oevQo2qjDqVpgqVL74vf+eVF8c5Zr41T9vzNeMseJ8dvPftt1Rm26HzuIH0YtvNDT23nKyv1pa96/+7F8d7LlsaJp5xQ/qDIwKpvxUWnn9cIcgMxd+FrIm6/Y0uQGMv55x0YBz34T/H5axsh6u6r4sooAlN5d7VcbTrh0Nhr767GFXXP5xd37rJt1ffDuL4+Z3POYv3Xl2NmxoL3fShOnPNgrFhZ9RU1/Lk05u7aTrv1MWXV+1utY2Vc/83OXc9yv9f8K5fF0iLc1Hd6V911Syxtnbs434W/H9+a9aH42Nvaw1Xr65G+6v3u17TfdU1VHH/bHT8c6lt17WfiygcPjf3LO6BpbUtjZfXvYdi6R7oWVQ1b77wT48RoHFP+W3hNdbf1h/Glz29Zxz2f/1TcNqf+d9LvuvTpa/57HuE6pPmWL/pQnL0o4srLv1Wtd4Rrp5RSaqtKJhZhaWIRkvpVsmHDhhEraTu+WeXb94XmGjqBrQ6C7ZW0zdldSdvxzUrPORm6FsV2WlsZIIv+1NZ5THc1q3VPmFgEzhvjz//76UNznX3OR+MlRx1ZPtZtqf9fv3dj+Zw6d0erIFrNVYfTcr7mGnpUbehXQi1/vHM7uJdffu6usceuxRMsJt+0fkNMnDSx2J5c9GyKwY0bY/3G9JP3ERs3bYxNmzeXi0iLu+gvL43jXvtbsetWvxJqeVz70Q/FNx6sdpM5r433n3VCDP0CnhXfjAvPvyUOOOdPY8GMqq087jMRp6S25nbVPaRz/uUn/HW8Zb+qqXRHfOG0v45bq72IQ+Odl7wz5qbNcr6lccKw/f9VBJ+Og97VONewvi3nWHnNn8dHvv7Toeey8u9+Lz6bPtqYHPx7cVERVLZorD8acw9bR1rvFTFz6Bp0Pedh69grTjxpdnzjttlD1/Hu1vk716a+9rMPPjSiGLPV3Hd+Ns64bMvvKuso5uj7eozwmiY9r2vn+OWzDo1bb6nnbbw+haHrWxi27tQwwrXo6Hf9hs8VzefffB79rsuKPn3la9z499zjOpSv2bJ6vuqazqpeu57XDoA2V359SbzuNUfHI09Udxh7uOGaq8ugNZJDX3pkvPzY46q9dnvsOiW+9k9L4lUndX6X6DNpDY+vLQLbMJ0biEUkLLdu+Pa34/vf/V6nqfCSo14arzj++FjS1X5Y0f7yor2MlOnALdlyyG47TRq2hl5m7vas4b+ndMXP+l+or/3dp1PUrfa2NnnypKJ7YmxYv27o6SWzfun5sf8hR8TOuzx9f2Z05dXnxoeXnRQf/+1mwHsaFN/w/+K8pfHKv2wEkx1s6LksXP70zF0EptOvmh0fOLsrCO5AO+z12F49rsUzdr0APO2+8c/Xx+tfd0w8+mTnDuN4eM4uk+N/fu26OPHVryj3n0lreOyp5hpSrmumto6BMqA22+v8V7SVh1Qj0p3Owc7IoREpK1a/HnT3nYevoZcZz54ytj8zetLJ74iFv/HmnnXMSW+MVyx6fRzf1T7/0CNjp513bj3nttaM418dB99yW9zd0rc9tequH8TSObM7bzOPU9XP5dptmntFXHvBZxvX4Yfxhc/cHLMPOiDLc3i6X4+x1eivxTNjvUoppcat0lvJE8ev6h/0eSauobOdHlM18186pvPWe0qYnbGdts64amz6qhqK/3Yeq/26rXxbP223raGlakN3Slc92X079xfInZ+J0z6d/nTWS+Ldn3x3zOu0jo/tnXvFVfHRc78a9Tvmc15zbpx13Mxq7xeMawFAl+uuvikOPvDFMWvWeL1/GLFs2cq45bYfxTHHHVHuW0NnDb3sucuk4W/fP/TkpqoLAODnw88efzK+/y+3x1NPjd+fGd15553isMMPiGfv1vnoojX0/wjn83aZODyUrn6qz+8ZBQCAHeC5O08Y/pnS8kMASimllFJKjWdVhu6UPrx265++AgCAHWnaTgOdt+8XLVo0eNniL/UMpTdf89VqCwAAxu6UU06JHz34eLU3XAql73r7yaMLpTffnH46HAAAxuacc86Jvfbaa8RQGimUrnjo8cF/++ljrbV48eLBU089NSXWHV5Llixpbe+uXuNGe3yqfmPHcp5UT9e8dY00ZnvXvr3HK6WUUuoXo9auXTv4wAMPDC5btmxw9erVg2vWrBlWjzzyyNBjsx599NHBxx57bHDlypXl8UlbzkyVcmjKo1t+0GkcFIGn2toxjj766O2aIx1bH9/rPPWYZvVr39HGax4AgB1p1G/fX3rppVXL9kkhKoXHensk9dim5jm69etrqsd1r2E0xya95hlp/uZ8zfnb1pJ0n6v7/CPtd2vrb5u31u9cAMDPt7Vr18aqVati0qRJMWXKlJgwYfj9zPQXmQYHB4f9Zaak/mtN6fh169aN6u37cb1T2i0Fnmb1ausnBapm9WprSm1t841FGt997uZ5+2nO1xzfq30kbc8x6dVeq/vreZtzN/cBAHa0Md0p7Q453aFlpP42/YJT8/i2cak/tfebp62/1zH9ztU2/2jV5+w3bz9tx9fbIz02dbeNZgwA8ItrPO+UjjqUvulNbyr368CSwksy2v3RGG0gqsd1jx9pP0ltSds8beOfTvXctTRXrzV297Udm3Qf33a+pPv4pJ5jJG3nAwB+/v1chtJm+Glr66ceX0vHdbclvdqbutfVNJrjk9Gsu9eau+do7redt209Ix3TNNLxIxnLWADg58tIoTS1p7bNmzfHpk2bqtZnSChNUlt3f+3pCDnNczfn7aW5xtEe0zTW59Cvv9nXXEdz/GiPT0ba79arv9leb490LgDg51u/UDpx4sSyDjvssPj+978/LJju0FDa9pnSpBlauvtHCj9J2zlrvY5Puvvazttrv7uv1qu9Wxo3ku7ztB3TvZ5+Y5K29TXbmsd3j0vajm+q+0caBwD8YugVSutAus8++8SMGTNi7733jk9/+tNDwXRbQunwe7AjSEGlGVaa23UgamsbSX3eZnVL59qesLStx/XSXGt3tWn21dvd16dtTK0eW1+H7mPTfvPYtv76sVl1W9KcDwCgTR1I586dG/vuu28ce+yxccABB8Qll1xShtbUty3GFEpHa6zhpjso1SGpKZ2z13nT+PEOVN3rbda26D6+e79+fvV1aD7fNKb7+af9+tik7q+Pratua44FAOglhc63v/3t8cY3vjHe8IY3xCGHHFKG08MPPzxuuOGGrT53Olpjevs+6Q5Jte72fuOabd37tV7tSVtfc75+xybbMmcvYz2me3zb8WM552jO108aP5Lu89fGMk8t9/EAwOi1vX1f3yntJb2Fn2qHvn3fL8DUASGNqcf1Cw3Nc9XHNGus0lyp0rE7KqzU62qur56zTb/n0a9vJOnYp+P4VPV1qytpPtbbAABJ+szo+vXry9qwYcPQY13Nn8Ifk3SnNP0h/LY/kJ9q8eLFg6eeemq6jfq0VBGEymruN/tHak810jH9jk21LXOm6nX+fvttfXVb92O/qo/rHjvSfrO97fhmjfZcSimllPrFqLVr1w4+8MADg8uWLRtcvXr14Jo1a4bVI488MvTYrEcffXTwscceG1y5cmV5fNKWM1OlHJry6A75TOlI+t19K4JQtbW1kfqad/j6ja2lMc3q1Zak7V7rHuvdxHp93evtVfWY5mNT99jmft3W7/gkjevuS/v18QAAO9KYP1P6dGsLQ21tte6+OjS1je91nn7nH6163l629/zjpd/1S56OawUA/P+p16+EqqXPjY77X3TaUaEUAIBnpvEMpVnevgcAgCZ3SgEAaJXudN51111x//33x+rVq6vWLXrdKd1jjz3iBS94QXmH1Nv3AABslxRKr7jiivLv20+bNq1qjTKIJql/8+a0v7lsq39d1COPPBr33feTOOqoo7x9DwDA9kufKa0DaQqeGzduig0bNxbhc0M8+eTaeOKJJ+Lxnz0Rjz76eKx6aHU88NOl5S/XX75ieXnMaAmlAAD0lcJoqvqvNW3etLm6K7oh1q1bX94NTfXUU2uH+sZKKAUAYESdULolmG4qwufGTRtj48aNsaEIpymgDhb9dYAdK6EUAIDshFIAALITSgEAyE4oBQAgO6EUAIBRSb/qKf250Wc9a0rstNOzYvfddovnPGf3mDp1j5g2bWo8+9m7ViPHTigFAGBU0t++X3j8cfHHp50WHz7/vLjk4ovik5+4JL721X+MH95xaxFUd6pGjp1QCgDAqO27777xspe9LA4/4oihmjtvXsyeM6casW2EUgAARiX9ftKLPn5x/MbrXx9HH/2KOPTQw+Kggw6JF77wRbHnnjPLPzu6rYRSAABGxdv3AAA8I3j7HgCArLx9DwBAdt6+BwDgGWHhwoVx0kknxfHFY12HvuQl8fxf/dVqxLYRSgEAGJX09v0ZZ743Fhx7bBx00MGxzz77xt57vzjmzPml2H33qd6+BwBgx9u0aVOsX78+1q1bXwTQdfHY44/Ho48+FmvWPBIPP7wmfvazJ6qRYyeUAgCQnVAKAEB2QikAANkJpQAAZCeUAgCQnVAKAMCIBgcHy0q/FirV4GDxuKmz3alNsTm1FbUthFIAAPpKYXRTEUA3btxY/lqotN3Z39CpTRuH+tLYbSGUAgDQ09SpU+ORRx6JgYEiOE6YEBMnTohJkybG5MmTYpdddo5dd901dt99t2Lcc+J5z50WM6bvWf4u0z2es0d1htEZWLRo0eBli78UD69tT7U3X/PVuPnmm+PSSy+tWgAA+EWQ/kLT7bffHvfff3+sfnh11TqyFEinT58e+++/f6xbty722muv+NGDj1e9w03baSDe9faThVIAANqlULpq1aqYNGlSTJkypbxT2jQwMFC+XZ8em9J+qnT8aEOpt+8BAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAIDuhFACA7IRSAACyE0oBAMhOKAUAYNQmTpwYU6ZMKWvy5MlDj3Wl/m0hlAIAMGopdB555JExf/78sg466KBYuHBhnH766XHppZfGhAnbFi+FUgAARm3Tpk1x4403loH0iCOOiNe97nVx6qmnxsknn1w+bt68uRo5NkIpAACjlkJpqsWLF8f06dPLcPqiF70oDj300DKQpr5tIZQCANDXwMDAsErhM9WHPvSh8u38ffbZZ7sCaSKUAgDQVwqebcF0cHAwXvWqV5WPab97zFgIpQAA9JVCafoBpu7QmYLoxo0btzuQJkIpAAB91YG0W93WDKNt40ZDKAUAoK+2u6SjqbEQSgEA6KtXKE3qx+0llAIA0NeTTz65TTUWA4sWLRq8bPGX4uG1g1XTcDdf89VYsGBBtQcAAGOz1157xY8efLzaG27aTgPxrrefPHIoffGc3aotAADYNtsdSgEAYEepQ6nPlAIAkJ1QCgBAdkIpAADZCaUAAGQnlAIAkN3QT98DAEAOQ78SqtoHAIAMIv4fDu5eUrIT/DkAAAAASUVORK5CYII=" alt="" />




基于visual Studio2013解决C语言竞赛题之0522和为素的更多相关文章

  1. 基于visual Studio2013解决C语言竞赛题之0401阶乘

      题目 解决代码及点评 这个是一道经典的教科书题目,基本上每本基础的c/c++语言教科书都会有这个题目 用来演示循环语句 #include <stdio.h> #include ...

  2. 基于visual Studio2013解决C语言竞赛题之0205位数求和

     题目

  3. 基于visual Studio2013解决C语言竞赛题之0201温度转换

    题目 解决代码及点评 #include <stdio.h> #include <stdlib.h> void main() { float f; float c; float ...

  4. 基于visual Studio2013解决C语言竞赛题之0409 100以内素数

       题目 解决代码及点评 在已经知道素数是怎么判断的基础上,增加循环,可以判断出100以内的素数 /******************************************* ...

  5. 基于visual Studio2013解决C语言竞赛题之0408素数

      题目 解决代码及点评 判断一个数是不是素数的方法,一般是看n是不是能被n以内的某个整数(1除外)整除 为了提高效率,这个整数范围一般缩小到n的平方根 如果在这个范围内的整数都不能整除,那么 ...

  6. 基于visual Studio2013解决C语言竞赛题之0407最大值最小值

      题目 解决代码及点评 这道题考察循环和比较 /*********************************************************************** ...

  7. 基于visual Studio2013解决C语言竞赛题之0406数列求和

      题目 解决代码及点评 这个题目,还是考察for循环的使用 以及数列规律,该数列的特点是第n个分子 = 第n-1个分子 + 第n-2个分子,分母也是此规律 而另外一个规律是第n个分子和第n- ...

  8. 基于visual Studio2013解决C语言竞赛题之0405阶乘求和

      题目 解决代码及点评 这道题和上一道题类似,第n个累加项 = n-1累加项的n倍 由于有这个规律,我们可以用一个for循环实现 但是例子代码并没有这么做,大家可以回去修改下代码,使得代码更 ...

  9. 基于visual Studio2013解决C语言竞赛题之0404循环求和

      题目 解决代码及点评 这道题考验for循环和一个简单的算法 因为每次累加的值有规律,后面一次累加是前面一次累加的两倍 所以可以用简单的循环,计算累加项和累加结果 /************ ...

随机推荐

  1. 一个php user class

    这个类叫php user class.php user class is an easy to use php snippet for user manipulation (register, log ...

  2. perl 第十四章 Perl5的包和模块

    第十四章 Perl5的包和模块 by flamephoenix 一.require函数  1.require函数和子程序库  2.用require指定Perl版本二.包  1.包的定义  2.在包间切 ...

  3. Flex LinkButton鼠标划过出现下划线

    在LinkButton中 textDecoration属性设置label的是否有下划线装饰,属性值分为"none","underline" 代码如下------ ...

  4. android 安全未来怎么走

  5. [置顶] SQL日期类型

    在做机房收费系统的时候,上下机,我觉得是我在整个系统中遇到最棘手的问题了,现在就给大家,分享一下,我是怎样解决的. SQL中有3中数据类型是关于日期的,每一种的用法是不同的,当你用错了,就会出现下面这 ...

  6. 数据科学家:神话 &amp; 超能力持有者

    一个打破神话的季节,正在降临.        我将坦诚地揭穿人们关于数据科学家所持有的惯有看法.在下文中,我将一个一个展示这些观点,宛如将一个又一个的玻璃瓶子摔碎在墙壁上一样.        关于数据 ...

  7. Intellij IDEA创建Maven Web项目

    1前言 在创建项目中,IDEA提供了非常多项目模板,比方Spring MVC模板,能够直接创建一个基于Maven的Spring MVC的demo,各种配置都已经设定好了,直接编译部署就能够使用. 最開 ...

  8. poj 3128 Leonardo&#39;s Notebook(置换的幂)

    http://poj.org/problem?id=3128 大致题意:输入一串含26个大写字母的字符串,能够把它看做一个置换.推断这个置换是否是某个置换的平方. 思路:具体解释可參考url=ihxG ...

  9. 法方总经理用的笔记本电脑&一体机拆开图。

    键盘上有三个字符,

  10. iOS开发之第三方登录微博-- 史上最全最新第三方登录微博方式实现

    相关资源地址: 本项目demo地址 :  https://github.com/zhonggaorong/weiboSDKDemo 最新SDK下载:  最新微博SDK 官网注册地址:点击打开链接 最新 ...