hdu 4649 Professor Tian 多校联合训练的题
这题起初没读懂题意,悲剧啊,然后看了题解写完就AC了
题意是给一个N,然后给N+1个整数 接着给N个操作符(只有三种操作 即 或 ,与 ,和异或 | & ^ )这样依次把操作符插入整数之间就可以得到一个表达式
接着给出 N 给浮点数(在0~1之间表示概率 )表示的是 操作符和他右边的整数丢失的概率。 例如下面这组数据
1
1 2
&
0.5
整数与操作符间可以组成一个表达式即 1&2 但是由于某些原因表达式的操作符和他操作的右边的
那个数有一定的概率会丢失这组数据就是 &2有 0.5的概率会丢失 ,要你算这个表达式的期望值是
多少 这组数据可以这样算 当&2不丢失的时候1&2=0
当他丢失的时候表达式就变成了1 这样这个表达式的期望值就是 0*0.5+1*0.5=0.5 ;
貌似没思路啊。。。。
思路如下:
先反状态压缩——把数据转换成20位的01来进行运算因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就得到了总体的期望。对于每一位,状态转移方程如下:
f[i][j]表示该位取前i个数,运算得到j(0或1)的概率是多少。
f[i][1]=f[i-1][1]*p[i]+根据不同运算符和第i位的值运算得到1的概率。
f[i][0]同理。
初始状态:f[0][0~1]=0或1(根据第一个数的该位来设置)
每一位为1的期望 f[n][1]
最后的结果就是把每一位为一的概率乘上这位的位权相加就可以了
下面是我的代码:
#include<cstdio>
#include<bitset>
#include<iostream>
using namespace std;
bitset<20> team[205];//强烈推荐用bitset,这个比较快而且简单好用,关键还省空间
char ch[205];
int pow[20],n,cas=0;
double p[205], dp[20][205][2];
int cal(int i,char c,int j,int f=0)//f=0表示 默认是计算通过运算为0的概率,f=1则是去计算为1的概率
{//这个函数计算的运算结果概率只能是1或0,所以可以返回真假值
int ans;
if(c=='&') ans=i&j;
if(c=='^') ans=i^j;
if(c=='|') ans=i|j;
if(!f) return ans==0;//返回通过计算为0的概率
else return ans==1;//返回通过计算1的概率
}
int read()
{
if(!(cin>>n)) return 0;//没有读入了就返回假值
for(int a,i=0;i<=n;i++)
{
cin>>a;
team[i]=a;//用bitset转化为二进制
}
for(int i=0;i<n;i++)
cin>>ch[i];//读操作符
for(int i=0;i<n;i++)
cin>>p[i];//读概率
return 1;
}
void deal()
{
double ans=0;
for(int i=0;i<20;i++)//初始化第一位的概率
if(team[0][i]) dp[i][0][1]=1,dp[i][0][0]=0;
else dp[i][0][1]=0,dp[i][0][0]=1; for(int i=0;i<19;i++)
for(int j=1;j<=n;j++)
{
dp[i][j][1]=dp[i][j-1][1]*p[j-1]+(1-p[j-1])*(dp[i][j-1][0]*cal(0,ch[j-1],team[j][i],1)+dp[i][j-1][1]*cal(1,ch[j-1],team[j][i],1));//这个dp式如果还不懂就看一下,文章尾部我的说明。。
//计算当前为1的概率
dp[i][j][0]=dp[i][j-1][0]*p[j-1]+(1-p[j-1])*(dp[i][j-1][0]*cal(0,ch[j-1],team[j][i])+dp[i][j-1][1]*cal(1,ch[j-1],team[j][i]));
//计算当前为0的概率 和为1的概率是一回事的
} for(int i=0;i<20;i++)
ans+=pow[i]*dp[i][n][1];//统计结果
printf("Case %d:\n",++cas);
printf("%.6lf\n",ans);
}
int main()
{
for(int i=pow[0]=1;i<20;i++)
pow[i]=pow[i-1]*2;//计算二进制的位权
while(read()) deal();
return 0;
}
dp[i][j][1]=dp[i][j-1][1]*p[j-1]+(1-p[j-1])*(dp[i][j-1][0]*cal(0,ch[j-1],team[j][i],1)+dp[i][j-1][1]*cal(1,ch[j-1],team[j][i],1));
其中dp[i][j][1]表示前j个操作后使第i位变成1的概率,dp[i][j-1][1]*p[j-1],表示当前的操作符和其右边的数消失后,使这位为1的概率
(1-p[j-1])*(dp[i][j-1][0]*cal(0,ch[j-1],team[j][i],1)+dp[i][j-1][1]*cal(1,ch[j-1],team[j][i],1));这整串是在算当前的操作符和其右边的数不消失的概率,所以有公因子(1-p[j-1])即表示,表达式不消失的概率,dp[i][j-1][0]*cal(0,ch[j-1],team[j][i],1)这句是在算如果上一步当前这位计算的结果是0,那么通过这步运算得到1的概率 ,dp[i][j-1][0] 这是上一步算出这位结果为0的概率,cal(0,ch[j-1],team[j][i],1)这是算0和当前的操作符及其右边的数进行运算为1的概率,这个概率要么是一要么是0,dp[i][j-1][1]*cal(1,ch[j-1],team[j][i],1)这句就是算若上次运算的结果是1那么和当前这一步运算后得到的是1的概率,终于说完这个恶心的式子了。。。下面那个算0的式子就可以对应的去理解了,即dp[i][j][0]=dp[i][j-1][0]*p[j-1]+(1-p[j-1])*(dp[i][j-1][0]*cal(0,ch[j-1],team[j][i])+dp[i][j-1][1]*cal(1,ch[j-1],team[j][i]));
hdu 4649 Professor Tian 多校联合训练的题的更多相关文章
- HDU 4649 Professor Tian
Professor Tian Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) T ...
- HDU 4649 Professor Tian (概率DP)
Professor Tian Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)To ...
- HDU 5371 (2015多校联合训练赛第七场1003)Hotaru's problem(manacher+二分/枚举)
pid=5371">HDU 5371 题意: 定义一个序列为N序列:这个序列按分作三部分,第一部分与第三部分同样,第一部分与第二部分对称. 如今给你一个长为n(n<10^5)的序 ...
- HDU 4649 Professor Tian(DP)
题目链接 暴力水过的,比赛的时候T了两次,优化一下初始化,终于水过了. #include <cstdio> #include <cstring> #include <st ...
- hdu 4649 Professor Tian 反状态压缩+概率DP
思路:反状态压缩——把数据转换成20位的01来进行运算 因为只有20位,而且&,|,^都不会进位,那么一位一位地看,每一位不是0就是1,这样求出每一位是1的概率,再乘以该位的十进制数,累加,就 ...
- HDU 4643 GSM 暑期多校联合训练第五场 1001
点击打开链接 我就不说官方题解有多坑了 V图那么高端的玩意儿 被精度坑粗翔了 AC前 AC后 简直不敢相信 只能怪自己没注意题目For the distance d1 and d2, if fabs( ...
- HDU 4649 Professor Tian(反状态压缩dp,概率)
本文出自 http://blog.csdn.net/shuangde800 题目链接:点击打开链接 题目大意 初始有一个数字A0, 然后给出A1,A2..An共n个数字,这n个数字每个数字分别有一 ...
- HDU 4649 - Professor Tian(2013MUTC5-1007)(概率)
不知道这题算作什么类型的题目,反正很巧妙,队友小杰想了没一会就搞定了 为了学习这种方法,我也搞了搞,其实思路不难想,位运算嘛,只有0和1,而且该位的运算只影响该位,最多20位,一位一位地计算即可,只需 ...
- HDU 4649 Professor Tian(概率DP)题解
题意:一个表达式,n + 1个数,n个操作,每个操作Oi和数Ai+1对应,给出每个操作Oi和数Ai+1消失的概率,给出最后表达式值得期望.只有| , ^,&三个位操作 思路:显然位操作只对当前 ...
随机推荐
- 第04讲- Android项目目录结构分析
学习内容: 1. 认识R类(R.java)的作用 R.java是在建立项目时自动生成的,这个文件是只读模式,不能更改.R类中包含很多静态类,且静态类的名字都与res中的一个名字对应,即R ...
- python高级编程(第12章:优化学习)3
#微观剖析 ''' 当找到速度很慢函数时,有时还需要做到测试某个部分函数剖析工作,这需要通过手动对一部分代码速度测试完成 ''' """ import tempfile, ...
- ios block使用
BlockTest.h #import <Foundation/Foundation.h> typedef void (^didFinishBlock)(NSString *str); t ...
- [HDU 1317]XYZZY[SPFA变形][最长路]
题意: 一个图, 点权代表走到该点可获得的能量值. 可正可负. 一个人从1 号出发,带有100点能量. 问是否有一种方案可使人在能量值>0的时候走到n. 思路: 这个题首先要注意点权. 其实就是 ...
- Linux 终端訪问 FTP 及 上传下载 文件
今天同事问我一个问题,在Linux 下訪问FTP,并将文件上传上去. 我之前一直是用WinSCP工具的. 先将文件从linux copy到windows下,然后在传到ftp上. google 一下. ...
- [core Java学习笔记][第一二三章基本语法]
基本语法 1 Java 简单的类型 1.1 一些常量 正无穷大 Double.POSITVE_INFINITY 负无穷大 Double.NEGATIVE_INFINITY 不存在 Double.NaN ...
- simplify the life ECMAScript 5(ES5)中bind方法简介
一直以来对和this有关的东西模糊不清,譬如call.apply等等.这次看到一个和bind有关的笔试题,故记此文以备忘. bind和call以及apply一样,都是可以改变上下文的this指向的.不 ...
- 数据结构——左高树
一.扩充二叉树 考察一棵二叉树,它有一类特殊的节点叫做外部节点( external node),用来代替树中的空子树,其余节点叫做内部节点( internal node).增加了外部节点的二叉树被称为 ...
- Android SQLite的使用2(非原创)
1.数据库的增.删.改.查:execSQL方法 public void insertAction() {//添加信息 db.execSQL("insert into Emp(name,sal ...
- [转]CENTOS6 VNCSERVER安装
标签:vncservercentos6.0 ssh隧道 vncviewer centos 休闲 职场 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律 ...