昨晚写的题...补发一下题解...

把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd)

S->0(K, 0), S->xi(1, 0)(从i点继续走), 0->yi(1, distance(0->i))(从0出发), xi->yi(1, distance(i->j))(i点走向j点), yi->T(1, 0)(每个点必须经过至少一次), 然后跑最小费用最大流, 费用即为答案.

写完这道题感觉...只是会这道题的建模了...对于一般的下界费用流并没有更深的理解(建图通法)....

----------------------------------------------------------------------------------

#include<queue>
#include<cstdio>
#include<cstring>
#include<algorithm>
 
using namespace std;
 
const int maxn = 159;
const int maxv = 309;
const int INF = 0X3F3F3F3F;
 
int d[maxn][maxn], a[maxv], D[maxv], X[maxn], Y[maxn], N, V, K, S, T;
bool inq[maxv];
queue<int> q;
 
struct edge {
int to, cap, cost;
edge *next, *rev;
} E[50000], *pt = E, *head[maxv], *p[maxv];
 
inline void Add(int u, int v, int c, int w) {
pt->to = v;
pt->cap = c;
pt->cost = w;
pt->next = head[u];
head[u] = pt++;
}
 
inline void AddEdge(int u, int v, int c, int w) {
Add(u, v, c, w);
Add(v, u, 0, -w);
head[u]->rev = head[v];
head[v]->rev = head[u];
}
 
void Init() {
int m;
scanf("%d%d%d", &N, &m, &K);
memset(d, INF, sizeof d);
V = 1;
S = V++, T = V++;
for(int i = 1; i <= N; i++)
X[i] = V++, Y[i] = V++;
while(m--) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
d[u][v] = d[v][u] = min(d[u][v], w);
}
for(int k = 0; k <= N; k++)
for(int i = 0; i <= N; i++)
for(int j = 0; j <= N; j++) if(k <= max(i, j))
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
AddEdge(S, 0, K, 0);
for(int i = 1; i <= N; i++) {
AddEdge(S, X[i], 1, 0);
AddEdge(Y[i], T, 1, 0);
if(d[0][i] != INF) AddEdge(0, Y[i], 1, d[0][i]);
}
for(int i = 1; i <= N; i++)
for(int j = i; ++j <= N; )
if(d[i][j] != INF) AddEdge(X[i], Y[j], 1, d[i][j]);
}
 
int Work() {
int ret = 0;
for(; ; ) {
for(int i = 0; i < V; i++)
inq[i] = false, D[i] = INF;
q.push(S);
a[S] = INF;
D[S] = 0;
while(!q.empty()) {
int x = q.front(); q.pop();
inq[x] = false;
for(edge* e = head[x]; e; e = e->next) 
if(D[e->to] > D[x] + e->cost && e->cap) {
D[e->to] = D[x] + e->cost;
a[e->to] = min(a[x], e->cap);
p[e->to] = e;
if(!inq[e->to])
inq[e->to] = true, q.push(e->to);
}
}
if(D[T] == INF) break;
ret += D[T] * a[T];
for(int x = T; x != S; x = p[x]->rev->to) {
p[x]->cap -= a[T];
p[x]->rev->cap += a[T];
}
}
return ret;
}
 
int main() {
Init();
printf("%d\n", Work());
return 0;
}

----------------------------------------------------------------------------------

2324: [ZJOI2011]营救皮卡丘

Time Limit: 10 Sec  Memory Limit: 256 MB
Submit: 1806  Solved: 724
[Submit][Status][Discuss]

Description

皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘,也为了正义,小智和他的朋友们义不容辞的踏上了营救皮卡丘的道路。

火箭队一共有N个据点,据点之间存在M条双向道路。据点分别从1到N标号。小智一行K人从真新镇出发,营救被困在N号据点的皮卡丘。为了方便起见,我们将真新镇视为0号据点,一开始K个人都在0号点。

由于火箭队的重重布防,要想摧毁K号据点,必须按照顺序先摧毁1到K-1号据点,并且,如果K-1号据点没有被摧毁,由于防御的连锁性,小智一行任何一个人进入据点K,都会被发现,并产生严重后果。因此,在K-1号据点被摧毁之前,任何人是不能够经过K号据点的。

为了简化问题,我们忽略战斗环节,小智一行任何一个人经过K号据点即认为K号据点被摧毁。被摧毁的据点依然是可以被经过的。

K个人是可以分头行动的,只要有任何一个人在K-1号据点被摧毁之后,经过K号据点,K号据点就被摧毁了。显然的,只要N号据点被摧毁,皮卡丘就得救了。

野外的道路是不安全的,因此小智一行希望在摧毁N号据点救出皮卡丘的同时,使得K个人所经过的道路的长度总和最少。

请你帮助小智设计一个最佳的营救方案吧!

Input

第一行包含三个正整数N,M,K。表示一共有N+1个据点,分别从0到N编号,以及M条无向边。一开始小智一行共K个人均位于0号点。

接下来M行,每行三个非负整数,第i行的整数为Ai,Bi,Li。表示存在一条从Ai号据点到Bi号据点的长度为Li的道路。

Output

仅包含一个整数S,为营救皮卡丘所需要经过的最小的道路总和。

Sample Input

3 4 2
0 1 1
1 2 1
2 3 100
0 3 1

Sample Output

3
【样例说明】
小智和小霞一起前去营救皮卡丘。在最优方案中,小智先从真新镇前往1号点,接着前往2号据点。当小智成功摧毁2号据点之后,小霞从真新镇出发直接前往3号据点,救出皮卡丘。

HINT

对于100%的数据满足N ≤ 150, M ≤ 20 000, 1 ≤ K ≤ 10, Li ≤ 10 000, 保证小智一行一定能够救出皮卡丘。至于为什么K ≤ 10,你可以认为最终在小智的号召下,小智,小霞,小刚,小建,小遥,小胜,小光,艾莉丝,天桐,还有去日本旅游的黑猫警长,一同前去大战火箭队。

Source

BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )的更多相关文章

  1. bzoj 2324 [ZJOI2011]营救皮卡丘(floyd,费用流)

    2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1777  Solved: 712[Submit][Stat ...

  2. BZOJ2324 [ZJOI2011]营救皮卡丘 【费用流】

    题目 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘,也为了正义,小智和他的朋友们义不容辞的踏上了营救皮卡丘的道路. 火箭队一共有N个据点,据点之间存在M条双向道 ...

  3. BZOJ 2324: [ZJOI2011]营救皮卡丘(带上下限的最小费用最大流)

    这道题么= =还是有些恶心的,第一次写带上下界的网络流,整个人都萌萌哒~~~ 首先先预处理得最短路后 直接用费用流做就行了。 第一次写,还是挺好写的= = CODE: #include<cstd ...

  4. bzoj 2324: [ZJOI2011]营救皮卡丘

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...

  5. 【洛谷P4542】 [ZJOI2011]营救皮卡丘(费用流)

    洛谷 题意: 给出\(n\)个点,\(m\)条边,现在有\(k,k\leq 10\)个人从\(0\)号点出发前往\(n\)点. 规定若某个人想要到达\(x\)点,则\(1\)~\(x-1\)号点都有人 ...

  6. BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)

    BZOJ 洛谷 首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路.可以用\(Floyd\)处理. 注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[ ...

  7. 【洛谷 P4542】 [ZJOI2011]营救皮卡丘(费用流)

    题目链接 用最多经过\(k\)条经过\(0\)的路径覆盖所有点. 定义\(ds[i][j]\)表示从\(i\)到\(j\)不经过大于\(max(i,j)\)的点的最短路,显然可以用弗洛伊德求. 然后每 ...

  8. bzoj 2324 ZJOI 营救皮卡丘 费用流

    题的大概意思就是给定一个无向图,边有权值,现在你有k个人在0点,要求走到n点,且满足 1:人们可以分头行动,可以停在某一点不走了 2:当你走到x时,前x-1个点必须全部走过(不同的人走过也行,即分两路 ...

  9. P4542-[ZJOI2011]营救皮卡丘【费用流,Floyd】

    正题 题目链接:https://www.luogu.com.cn/problem/P4542 题目大意 给出\(n+1\)个点\(m\)条边的无向图,\(k\)个人开始在\(0\)号点,一个人进入\( ...

随机推荐

  1. iOS 的 APP 如何适应 iPhone 5s/6/6Plus 三种屏幕的尺寸?(转)

    原文:http://www.niaogebiji.com/article-4379-1.html?utm_source=tuicool 初代iPhone 2007年,初代iPhone发布,屏幕的宽高是 ...

  2. cocos2D(九)---- CCAction

    之前介绍CCNode的时候说过,动作是指在特定时间内完毕移动.缩放.旋转等操作的行为,节点能够通过执行动作来实现动画效果,这里的动作就是指CCAction对象,它有非常多的子类,每一个子类都封装了不同 ...

  3. WdatePicker日历控件用法

    1. 跨无限级框架显示 不管你把日期控件放在哪里,你都不须要操心会被外层的iframe所遮挡进而影响客户体验,由于My97日期控件是能够跨无限级框架显示的 演示样例2-7 跨无限级框架演示 可无限跨越 ...

  4. 使用logstash收集日志的可靠性验证

    实时计算里,需要对日志实时收集,logstash可以做到.目前的版本是1.4.2,官方文档在http://www.logstash.net/docs/1.4.2/,里面有详细的配置说明,使用也很简单. ...

  5. .net通用权限框架B/S(二) 数据库设计

    1.组织机构---员工是1:n关系 2.角色---员工n:n 3.角色--导航菜单n:n 4.操作权限(id)---导航菜单(prms_id)n:n   [此处是n:n关系正常是生成第三张表存放多对多 ...

  6. c# 根据中文汉字获取到拼音

    public static String ConvertToPinyin(String str) { if (String.IsNullOrEmpty(str)) return String.Empt ...

  7. iOS极光推送的基本使用

    昨天花了一下午的时间研究了下极光推送,也前也是没做过,不知道从何下手!才开始的时候一看官方的SDK感觉好难,不过经过一系列的捣鼓之后,手机收到了推送信息,感觉其实并没有那么难! 1.配置开发证书(得有 ...

  8. Spring-----Spring Jar包

    转载自:http://blog.csdn.net/hekewangzi/article/details/51713110

  9. lightoj 1104 Birthday Paradox

    题意:给定一个一年的天数,求最少多少人可以使至少两人生日同一天的概率不少于0.5. 用二分去做.检验一个数是否符合时,刚开始实用普通的方法,直接计算,超时了~~,上网搜了一下代码,一位大神使用一个数组 ...

  10. (转)详解汇编系统调用过程(以printf为例)

    本文以printf为例,详细解析一个简单的printf调用里头,系统究竟做了什么,各寄存器究竟如何变化. 环境: linux + gnu as assembler + ld linker 如何在汇编调 ...