Problem Description
RXD is a good mathematician.
One day he wants to calculate:

∑i=1nkμ2(i)×⌊nki−−−√⌋

output the answer module 109+7.
1≤n,k≤1018

μ(n)=1(n=1)
μ(n)=(−1)k(n=p1p2…pk)
μ(n)=0(otherwise)

p1,p2,p3…pk are different prime numbers

 
Input
There are several test cases, please keep reading until EOF.
There are exact 10000 cases.
For each test case, there are 2 numbers n,k.
 
Output
For each test case, output "Case #x: y", which means the test case number and the answer.
 
Sample Input
10 10
 
Sample Output
Case #1: 999999937

打表大法好啊!打表之后发现就是求n^k%MOD

记得对n先做预处理取模,否则快速幂也救不了啊

 #include<cstdio>
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
const long long MOD=1e9+; long long quickmod(long long a,long long b,long long m)
{
long long ans = ;
while(b)//用一个循环从右到左遍历b的所有二进制位
{
if(b&)//判断此时b[i]的二进制位是否为1
{
ans = (ans*a)%m;//乘到结果上,这里a是a^(2^i)%m
b--;//把该为变0
}
b/=;
a = a*a%m;
}
return ans;
} int main()
{
long long n,k;
int t=;
while(~scanf("%lld%lld",&n,&k))
{
printf("Case #%d: ",t++);
n%=MOD;
printf("%lld\n",quickmod(n,k,MOD));
}
return ;
}

打表程序如下:

 #include<cstdio>
#include<iostream>
#include<cmath>
using namespace std; #define MOD 1000000000+7 bool panduan (long long num)
{
long long i;
for(i=;i<=sqrt((double)num)+;i++)
{
if(num%(i*i)==)
return true;
}
return false;
} int main()
{
int n,k;
long long num;
long long res=;
for(int n=;n<=;n++)
for(int k=;k<=;k++)
{
res=;
num=pow((double)n,(double)k);
for(int i=;i<=num;i++)
{
if(!panduan(i))
res+=(long long)(sqrt((double)(num/i)));
res%=MOD;
}
printf("%d %d %lld\n",n,k,res);
}
return ;
}

每一行三个数字分别表示n,k,res

HDU 6063 17多校3 RXD and math(暴力打表题)的更多相关文章

  1. HDU 6066 17多校3 RXD's date(超水题)

    Problem Description As we all know that RXD is a life winner, therefore he always goes out, dating w ...

  2. HDU 6060 17多校3 RXD and dividing(树+dfs)

    Problem Description RXD has a tree T, with the size of n. Each edge has a cost.Define f(S) as the th ...

  3. HDU 6090 17多校5 Rikka with Graph(思维简单题)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  4. HDU 6095 17多校5 Rikka with Competition(思维简单题)

    Problem Description As we know, Rikka is poor at math. Yuta is worrying about this situation, so he ...

  5. HDU 6140 17多校8 Hybrid Crystals(思维题)

    题目传送: Hybrid Crystals Problem Description > Kyber crystals, also called the living crystal or sim ...

  6. HDU 6143 17多校8 Killer Names(组合数学)

    题目传送:Killer Names Problem Description > Galen Marek, codenamed Starkiller, was a male Human appre ...

  7. HDU 6045 17多校2 Is Derek lying?

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=6045 Time Limit: 3000/1000 MS (Java/Others)    Memory ...

  8. HDU 6124 17多校7 Euler theorem(简单思维题)

    Problem Description HazelFan is given two positive integers a,b, and he wants to calculate amodb. Bu ...

  9. HDU 3130 17多校7 Kolakoski(思维简单)

    Problem Description This is Kolakosiki sequence: 1,2,2,1,1,2,1,2,2,1,2,2,1,1,2,1,1,2,2,1……. This seq ...

随机推荐

  1. js事件流 事件捕获 及时间冒泡详解

    Javascript与HTML之间的交互是通过事件实现. 一.事件流 事件,是文档或浏览器窗口中发生的一些特定的交互瞬间.事件流,描述的是页面中接受事件的顺序.IE9,chrome,Firefox,O ...

  2. ORACLE中ESCAPE关键字用法

    ESCAPE用法 1.使用 ESCAPE 关键字定义转义符: 在模式中,当转义符置于通配符之前时,该通配符就解释为普通字符. 2.ESCAPE 'escape_character'  允许在字符串中搜 ...

  3. Cassandra V2.1.20单机安装

    1. 系统调优 [root@sht-sgmhadoopcm- ~]# echo "vm.max_map_count=131072" >> /etc/sysctl.con ...

  4. nodejs sequelize 对应数据库操作符的定义

    const Op = Sequelize.Op [Op.and]: {a: } // 且 (a = 5) [Op.or]: [{a: }, {a: }] // (a = 5 或 a = 6) [Op. ...

  5. 把旧系统迁移到.Net Core 2.0 日记 (15) --Session 改用Redis

    安装Microsoft.Extensions.Caching.Redis.Core NuGet中搜索Microsoft.Extensions.Caching.Redis.Core并安装,此NuGet包 ...

  6. view的clickable属性和点击background颜色改变

    drawable可以是color(color只能是color) android:background=drawable或者color 当一个view(iamge/text view都可以)的andro ...

  7. body中的onload()函数和jQuery中的document.ready()有什么区别?

    1.我们可以在页面中使用多个document.ready(),但只能使用一次onload(). 2.document.ready()函数在页面DOM元素加载完以后就会被调用,而onload()函数则要 ...

  8. C#中使用FFMPEG切割、合并视频。

    参考网址:https://blog.csdn.net/samwang_/article/details/70332924 使用前先确保电脑已经安装了FFMPEG,并且配置好环境变量.检测是否安装配置好 ...

  9. day039 数据库索引

    今日内容: 1.为什么要有索引 简而言之,索引出现的意义是为了更方便,更快速的查询数据. 什么是索引 索引在mysql中也叫''键''或'key'(primary key unique key,ind ...

  10. java基础巩固之java实现文件上传

      对于文件上传,浏览器在上传的过程中是将文件以流的形式提交到服务器端的,如果直接使用Servlet获取上传文件的输入流然后再解析里面的请求参数是比较麻烦,所以一般选择采用apache的开源工具com ...