题目链接

\(Descripiton\)

  给出文本串S和模式串T和k,S,T为DNA序列(只含\(A,T,G,C\))。对于S中的每个位置\(i\),只要\(s[i-k]\sim s[i+k]\)中有一个位置匹配了字符\(c\),那么就认为\(i\)可以匹配\(c\)。求S中有多少位置匹配了T。

\(Solution\)

  题意一直不很明白。。(→_→这就是你颓了一下午一晚上写了一道题的理由?)

  匹配当然是连续的,即若位置\(i\)匹配,则\(S[i+j]=T[j]\ (0\leq j<m)\)。

  我们枚举每个字符c,算出每个位置的\(F[j]\),表示当前匹配字符c,\(s[j]\sim s[j+m-1]\) 能够和 \(T[0]\sim T[m-1]\) 匹配的有多少个。

  令\(f[i]=[位置i可以和当前字符c匹配],g[i]=[\ T[i]==c\ ]\),那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]g[i]$$

  一个位置\(i\)满足4个字符的\(f[i]\)之和等于\(len(T)\),\(i\)才是一个合法的位置。(怎么可能\(>len(T)\)还有T本身限制呢→_→)

  同上一题,反转\(g[\ ]\)吧,那么$$F[j]=\sum_{i=0}^{m-1}f[j+i]
g[m-1-i]=G[m-1+j]$$

  FFT算就行了。

  \(f[i]\)的预处理一遍前缀和就行啊。。

//467ms	22900KB
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
const int N=524300;//2^{19}=524288
const double PI=acos(-1); int n,m,k,sum[200005],id[150],cnt[N];
char s[200005],t[200005];
struct Complex
{
double x,y;
Complex() {}
Complex(double x,double y):x(x),y(y) {}
Complex operator + (const Complex &a)const{
return Complex(x+a.x, y+a.y);
}
Complex operator - (const Complex &a)const{
return Complex(x-a.x, y-a.y);
}
Complex operator * (const Complex &a)const{
return Complex(x*a.x-y*a.y, x*a.y+y*a.x);
}
}f[N],g[N]; void FFT(Complex *a,int lim,int opt)
{
for(int i=0,j=0; i<lim; ++i)
{
if(i>j) std::swap(a[i],a[j]);
for(int l=lim>>1; (j^=l)<l; l>>=1);
}
for(int i=2; i<=lim; i<<=1)
{
int mid=i>>1;
Complex Wn(cos(2.0*PI/i),opt*sin(2.0*PI/i)),t;
for(int j=0; j<lim; j+=i)
{
Complex w(1,0);
for(int k=0; k<mid; ++k,w=w*Wn)
a[j+mid+k]=a[j+k]-(t=w*a[j+mid+k]),
a[j+k]=a[j+k]+t;
}
}
if(opt==-1) for(int i=0; i<lim; ++i) a[i].x/=lim;//!
}
void Solve(int x,int lim)
{
memset(sum,0,sizeof sum);
for(int i=0; i<=n; ++i)
if(id[s[i]]==x) ++sum[std::max(0,i-k)], --sum[std::min(n+1,i+k+1)];
for(int i=1; i<=n; ++i) sum[i]+=sum[i-1]; for(int i=0; i<=n; ++i) f[i]=Complex((sum[i]>0),0);
for(int i=n+1; i<lim; ++i) f[i]=Complex(0,0);//Don't forget to clear it.
for(int i=0; i<=m; ++i) g[m-i]=Complex(id[t[i]]==x,0);
for(int i=m+1; i<lim; ++i) g[i]=Complex(0,0);
FFT(f,lim,1), FFT(g,lim,1);
for(int i=0; i<lim; ++i) f[i]=f[i]*g[i];
FFT(f,lim,-1); for(int i=0; i<=n; ++i) cnt[i]+=int(f[m+i].x+0.5);
} int main()
{
scanf("%d%d%d%s%s",&n,&m,&k,s,t), --n, --m;
id['A']=0, id['T']=1, id['G']=2, id['C']=3;
int lim=1;
while(lim <= n+m) lim<<=1;
for(int i=0; i<4; ++i) Solve(i,lim);
int ans=0;
for(int i=0; i<=n; ++i) if(cnt[i]==m+1) ++ans;
printf("%d",ans); return 0;
}

Codeforces.528D.Fuzzy Search(FFT)的更多相关文章

  1. CodeForces - 528D Fuzzy Search (FFT求子串匹配)

    题意:求母串中可以匹配模式串的子串的个数,但是每一位i的字符可以左右偏移k个位置. 分析:类似于 UVALive -4671. 用FFT求出每个字符成功匹配的个数.因为字符可以偏移k个单位,先用尺取法 ...

  2. CodeForces 528D Fuzzy Search 多项式 FFT

    原文链接http://www.cnblogs.com/zhouzhendong/p/8782849.html 题目传送门 - CodeForces 528D 题意 给你两个串$A,B(|A|\geq| ...

  3. codeforces 528D Fuzzy Search

    链接:http://codeforces.com/problemset/problem/528/D 正解:$FFT$. 很多字符串匹配的问题都可以用$FFT$来实现. 这道题是要求在左边和右边$k$个 ...

  4. Codeforces 528D Fuzzy Search(FFT)

    题目 Source http://codeforces.com/problemset/problem/528/D Description Leonid works for a small and pr ...

  5. 2019.01.26 codeforces 528D. Fuzzy Search(fft)

    传送门 fftfftfft好题. 题意简述:给两个字符串s,ts,ts,t,问ttt在sss中出现了几次,字符串只由A,T,C,GA,T,C,GA,T,C,G构成. 两个字符匹配的定义: 当si−k, ...

  6. ●codeforces 528D Fuzzy Search

    题链: http://codeforces.com/problemset/problem/528/D 题解: FFT 先解释一下题意: 给出两个字符串(只含'A','T','C','G'四种字符),一 ...

  7. CF 528D. Fuzzy Search NTT

    CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符 ...

  8. [Codeforces 580D]Fizzy Search(FFT)

    [Codeforces 580D]Fizzy Search(FFT) 题面 给定母串和模式串,字符集大小为4,给定k,模式串在某个位置匹配当且仅当任意位置模式串的这个字符所对应的母串的位置的左右k个字 ...

  9. CF528D. Fuzzy Search [FFT]

    CF528D. Fuzzy Search 题意:DNA序列,在母串s中匹配模式串t,对于s中每个位置i,只要s[i-k]到s[i+k]中有c就认为匹配了c.求有多少个位置匹配了t 预处理\(f[i][ ...

随机推荐

  1. dispatchers 设置

    Oracle连接方式(dispatchers 设置) oracle 响应客户端请求有两种方式: 1 专有连接:用一个服务器进程响应一个客户端请求 2 共享连接:用一个分派器(dispatcher)响应 ...

  2. OCM_第九天课程:Section4—》OCM课程环境搭建

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  3. OCM_第六天课程:Section3 —》数据库可用性

    注:本文为原著(其内容来自 腾科教育培训课堂).阅读本文注意事项如下: 1:所有文章的转载请标注本文出处. 2:本文非本人不得用于商业用途.违者将承当相应法律责任. 3:该系列文章目录列表: 一:&l ...

  4. Storm的部署

    配置方案如下 node1 Nimbus zookeeper node2 Supervisor zookeeper node3 Supervisor zookeeper node4 Supervisor ...

  5. 【ES】学习6-多字段搜索1

    本系列的笔记都来自:https://elasticsearch.cn/book/elasticsearch_definitive_guide_2.x/multi-field-search.html 下 ...

  6. JAVA Random 随机类

    nextInt 方法 得到一个随机整数, 可以指定范围 package object; import static net.util.Print.*; import java.util.Random; ...

  7. PHP 闭包

    一.闭包基本用法闭包(Closure)又叫做匿名函数,也就是没有定义名字的函数.比如下面的例子: // 定义一个闭包,并把它赋给变量 $f $f = function () { return 7; } ...

  8. (一)什么是webservice?

    第一节: 第一节:Webservice 简介 第二节: 第二节:CXF 简介 webservice 有的人一看到这个,估计会认为这个是一种新技术,一种新框架. 其实不是,严格的说,webservice ...

  9. Jmeter录制浏览器并回放

    确认证书 1.查看证书 进入Jmeter安装目录下的bin,找到ApacheJMeterTemporaryRootCA.crt 证书文件(如jmeter在安装目录中未找到,可尝试先执行下面的开始录制步 ...

  10. 【C++ Primer 第10章】 10.4.1 插入迭代器

    目录 •  iostream迭代器 •  反向迭代器 插入迭代器 插入迭代器,这些迭代器被绑定到一个容器上,可以向容器插入元素. 头文件为:#include<iterator it=t 在it指 ...