bzoj 1076 状态压缩最优期望
题意:
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随 机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常 小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i 种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉 这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?
dp[i][s] 还剩i次掉落机会,前k-i次已经选择了s的物品,那么接下来最优期望得多少分.
有种倒推的感觉,状态中保存了已经做的决策对该后续决策有影响的信息,相当与提前假设,然后根据未来的不同情况选择当前的最有决策.
/**************************************************************
Problem: 1076
User: idy002
Language: C++
Result: Accepted
Time:1144 ms
Memory:26660 kb
****************************************************************/ #include <cstdio>
#define max(a,b) ((a)>(b)?(a):(b))
#define K 101
#define N 15 int n, k;
int a[N], r[N], bound;
double dp[K][<<N]; int main() {
scanf( "%d%d", &k, &n );
for( int i=,p; i<n; i++ ) {
scanf( "%d", a+i );
while() {
scanf( "%d", &p );
if( p== ) break;
r[i] |= <<(p-);
}
}
bound = (<<n)-;
for( int i=; i<=k; i++ ) {
for( int s=; s<=bound; s++ ) {
dp[i][s] = 0.0;
for( int j=; j<n; j++ ) {
if( (s & r[j]) == r[j] ) {
double v1 = a[j]+dp[i-][s|(<<j)];
double v2 = dp[i-][s];
dp[i][s] += max( v1, v2 );
} else {
dp[i][s] += dp[i-][s];
}
}
dp[i][s] /= n;
}
}
printf( "%.6lf\n", dp[k][] );
}
bzoj 1076 状态压缩最优期望的更多相关文章
- BZOJ 1087状态压缩DP
状态压缩DP真心不会写,参考了别人的写法. 先预处理出合理状态, 我们用二进制表示可以放棋子的状态,DP[I][J][K]:表示现在处理到第I行,J:表示第I行的状态,K表示现在为止一共放的棋子数量. ...
- BZOJ 1076 奖励关(状压期望DP)
当前得分期望=(上一轮得分期望+这一轮得分)/m dp[i,j]:第i轮拿的物品方案为j的最优得分期望 如果我们正着去做,会出现从不合法状态(比如前i个根本无法达到j这种方案),所以从后向前推 如果当 ...
- BZOJ 1076: [SCOI2008]奖励关 [DP 期望 状压]
传送门 题意:$n$种宝物,出现$k$次每次一种,每种宝物有价值和吃掉它之前必须要吃掉的宝物的集合,求采取最优策略的期望最大价值 1<=k<=100,1<=n<=15,分值为[ ...
- bzoj 1076 奖励关 状压+期望dp
因为每次选择都是有后效性的,直接dp肯定不行,所以需要逆推. f[i][j]表示从第i次开始,初始状态为j的期望收益 #include<cstdio> #include<cstrin ...
- HDU 4336 Card Collector (期望DP+状态压缩 或者 状态压缩+容斥)
题意:有N(1<=N<=20)张卡片,每包中含有这些卡片的概率,每包至多一张卡片,可能没有卡片.求需要买多少包才能拿到所以的N张卡片,求次数的期望. 析:期望DP,是很容易看出来的,然后由 ...
- hdu 4336 Card Collector(期望 dp 状态压缩)
Problem Description In your childhood, people in the famous novel Water Margin, you will win an amaz ...
- 【bzoj1076】[SCOI2008]奖励关 期望dp+状态压缩dp
题目描述 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物,每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再 ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- BZOJ 1087 互不侵犯King 状态压缩DP
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1087 题目大意; 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国 ...
随机推荐
- quart源码阅读(一)
def run( self,host: str='127.0.0.1',port: int=5000,ssl: Optional[SSLContext]=None,debug: Optional[bo ...
- 如何把JS对象转成数组
1. 前言 首先,当JS对象是键值对的情况时(Json对象),因为数组时以数字为索引的,所以只能把JS对象中的Key或者Value组成数组使用. 2. 样例如下: var obj={"one ...
- Vue项目启动后首页URL带的#该怎么去掉?
修改router的mode为history就可以 const router = new VueRouter({mode: 'history', routes: [...]}) 实际修改后需要注意修改a ...
- webstrom里面的html页面设置
代码: <!DOCTYPE html> <html lang="zh"> <head> <meta charset="UTF-8 ...
- OneNET麒麟座应用开发之十:空气质量数据监测站项目总结
大气质量数据监测站用于测试空气质量监测及数据采集,实现野外或者室内空气质量的检测. 1.项目概述 本项目是一个定制项目,要求采集大气的压力.温度.湿度.PM25.位置等数据并上传到指定的后台服务器.但 ...
- linux 后台运行nohup & ctrl+z
使用Linux时,经常希望有些命令结果不在前台显示,如sh脚本,耗时的命令等.一般情况下,使用 & 将命令结果后台运行,如sh test.sh,脚本后台执行. 有时候命令已经在前台执行了,需要 ...
- django----文件配置
静态路径配置 STATIC_URL = '/static/' #这个配置就相当于下面配置的别名,如果这里的名字修改了就按照这里的名字去导入 STATICFILES_DIRS = [ os.path.j ...
- hdu1024线性dp
/* dp[i][j]表示取第i个数时分成了j块 要么是将第i个数加入j块中的最后一块,要么是自成一块,加上前面j-1块的和 状态转移方程: dp[i][j]=max(dp[i-1][j]+a[i], ...
- graphql详解
随着系统业务量的增大不同的应用和系统共同使用着许多的服务api,而随着业务的变化和发展,不同的应用对相同资源的不同使用方法最终会导致需要维护的服务api数量呈现爆炸式的增长,比如我试着跑了下我们自己业 ...
- Python 多环境配置管理
一.概述 实际工程开发中常常会对开发.测试和生产等不同环境配置不同的数据库环境,传统方式可以通过添加不同环境的配置文件达到部署时的动态切换的效果.这种方式还不错,不过不同环境间往往会共享相同的配置而造 ...