题目链接

**Anti-Nim游戏: **

先手必胜当且仅当:

1.所有堆的石子数为1,且异或和为0

2.至少有一堆石子数>1,且异或和不为0

简要证明:

对于1:若异或和为1,则有奇数堆;异或和为0,则有偶数堆。比较显然。

对于2:(1)对于只有一堆石子数>1的情况(异或和一定不为0),先手可以操作这堆石子 将场面变为奇数堆个数都为1的石子堆

(2)对于至少有两堆石子数>1的情况:

  • 若异或和=0,先手必败
  • 若异或和!=0,先手必胜

    类似Nim的证明,若异或和=0,则怎样操作都会使异或和!=0;若异或和!=0,则一定有一步能使异或和=0.(NP性质的转换)

    这两种状态不断转换,总会在某一时刻变为2.(1)中的状态,即一个必胜态,而这个必胜态是由异或和=0时转移来的。

    即异或和=0时一定会在某一时刻转移到一个必胜状态。
#include <cstdio>
#include <cctype>
#define gc() getchar()
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
} int main()
{
int t=read(),n,res,a; bool f;
while(t--)
{
n=read(), f=res=0;
while(n--)
a=read(), a>1?f=1:0, res^=a;
puts(f^(res>0)?"Brother":"John");
}
return 0;
}

BZOJ.1022.[SHOI2008]小约翰的游戏John(博弈论 Anti-Nim)的更多相关文章

  1. BZOJ 1022 SHOI2008 小约翰的游戏John 博弈论

    题目大意:反Nim游戏,即取走最后一个的人输 首先状态1:假设全部的堆都是1,那么堆数为偶先手必胜,否则先手必败 然后状态2:假设有两个堆数量同样且不为1,那么后手拥有控场能力,即: 若先手拿走一堆, ...

  2. bzoj 1022: [SHOI2008]小约翰的游戏John anti_nim游戏

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1189  Solved: 734[Submit][ ...

  3. BZOJ 1022 [SHOI2008]小约翰的游戏John

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1635  Solved: 1036[Submit] ...

  4. BZOJ 1022 [SHOI2008]小约翰的游戏John AntiNim游戏

    1022: [SHOI2008]小约翰的游戏John Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1475  Solved: 932[Submit][ ...

  5. BZOJ 1022: [SHOI2008]小约翰的游戏John (Anti-nim)

    Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 3134  Solved: 2003[Submit][Status][Discuss] Descripti ...

  6. BZOJ 1022: [SHOI2008]小约翰的游戏John【anti-SG】

    Description 小约翰经常和他的哥哥玩一个非常有趣的游戏:桌子上有n堆石子,小约翰和他的哥哥轮流取石子,每个人取的时候,可以随意选择一堆石子,在这堆石子中取走任意多的石子,但不能一粒石子也不取 ...

  7. BZOJ 1022: [SHOI2008]小约翰的游戏John [SJ定理]

    传送门 $anti-nim$游戏,$SJ$定理裸题 规定所有单一游戏$sg=0$结束 先手必胜: $1.\ sg \neq 0,\ 某个单一游戏sg >1$ $2.\ sg = 0,\ 没有单一 ...

  8. 51nod 1069 Nim游戏 + BZOJ 1022: [SHOI2008]小约翰的游戏John(Nim游戏和Anti-Nim游戏)

    首先,51nod的那道题就是最简单的尼姆博弈问题. 尼姆博弈主要就是判断奇异局势,现在我们就假设有三个石子堆,最简单的(0,n,n)就是一个奇异局势,因为无论先手怎么拿,后手总是可以在另一堆里拿走相同 ...

  9. bzoj 1022: [SHOI2008]小约翰的游戏John【anti-nim】

    如果全是1,那么n是奇数先手必败 否则,xor和为0先手必败 证明见 https://www.cnblogs.com/Wolfycz/p/8430991.html #include<iostre ...

随机推荐

  1. python学习之argparse模块

    python学习之argparse模块 一.简介: argparse是python用于解析命令行参数和选项的标准模块,用于代替已经过时的optparse模块.argparse模块的作用是用于解析命令行 ...

  2. JavaScript内置对象——Math对象

    这几天在刷leetcode的时候用到了一些Math对象的知识,故作一下总结~ JavaScript中的Math对象也是一个常见的内置对象,然而与String等其它常见对象不同,Math对象没有构造函数 ...

  3. 梯度优化算法总结以及solver及train.prototxt中相关参数解释

    参考链接:http://sebastianruder.com/optimizing-gradient-descent/ 如果熟悉英文的话,强烈推荐阅读原文,毕竟翻译过程中因为个人理解有限,可能会有谬误 ...

  4. kali Linux下wifi密码安全测试(1)虚拟机下usb无线网卡的挂载 【转】

    转自:http://blog.chinaunix.net/uid-26349264-id-4455634.html 目录 kali Linux下wifi密码安全测试(1)虚拟机下usb无线网卡的挂载 ...

  5. jvm系列一、java类的加载机制

    一.什么是类的加载 类的加载指的是将类的.class文件中的二进制数据读入到内存中,将其放在运行时数据区的方法区内,然后在堆区创建一个java.lang.Class对象,用来封装类在方法区内的数据结构 ...

  6. plsql developer日期类型数据格式不对如何设置?

    当把一个数据库中的数据复制到另一个数据库时,如果数据中包含日期类型,会提示数据格式不正确.或者两个plsql developer设置不同,但实际上建表语句一样. 此时可在plsql中做如下设置: 首选 ...

  7. 关于XMLHttpRequest状态的讨论及处理方法

    今天主要是讨论下XMLHttpRequest的响应状态问题.我们知道,XMLHttpRequest的响应阶段有5个,分别是: 请求未初始化 服务器连接已建立 请求已接收 请求处理中 请求已完成,且响应 ...

  8. python中的zip、map、reduce 、lambda函数的使用。

    lambda只是一个表达式,函数体比def简单很多. lambda的主体是一个表达式,而不是一个代码块.仅仅能在lambda表达式中封装有限的逻辑进去. lambda表达式是起到一个函数速写的作用.允 ...

  9. IntelliJ IDEA2017 使用教程

    一:安装教程 请参考<Windows7下安装与破解IntelliJ IDEA2017> 二:目录说明 三:开发界面

  10. 【ES】学习4-结构化搜索

    1. 结构化搜索得到的结果只有是和否,没有相似概念. term可以实现精确值查询 curl -XGET 'localhost:9200/logstash-cowrie/_search?pretty' ...