题意:

有三个二次函数,分别是$x^2 + a_1x + b_1$, $x^2 + a_2x + b_2$, $x^2 + a_3x + b_3$

现在要找三个整数$x_1, x_2, x_3$, 使得三个函数值中至少有两个相等。

思路:

主要的难点是要找三个整数。

Camp时候洪老师说的平移啥啥的,理解不了......

看了网上另一个题解的思路。

假设两个二次函数相等的函数值是$y$, 并假设是第一个和第二个相等

那么我们可以知道$x_1 =- \frac{a_1 + \sqrt{a_1^2 - 4(b_1 - y)}}{2}, x_2 =- \frac{a_2 + \sqrt{a_2^2 - 4(b_2 - y)}}{2}$

令$T^2 = a_1^2 - 4(b_1 - y), t^2 = a_2^2 - 4(b_2 - y)$

可以得到$T^2 - t^2 = a_1^2 - 4b_1 - a_2^2 + 4b_2 = (T+t)(T-t)$

于是我们进行因式分解,枚举$T^2-t^2$的因子,判断得到的$x_1, x_2$是否为整数。

对于$T^2-t^2$为0和1时进行特判就行了。

对于每一对$a$和$b$,判断是否有这样两个整数解。

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<stack>
#include<set>
#include<vector>
#include<cmath> using namespace std;
typedef long long LL; LL a[], b[];
int t;
LL ans1, ans2; bool solve(LL a1, LL b1, LL a2, LL b2)
{
int sub = abs(a1 * a1 - * b1 - a2 * a2 + * b2);
if(sub == ){
if((a1 - a2) % == ){
ans1 = ;
ans2 = (a1 - a2) / ;
return true;
}
else return false;
}
else if(sub == ){
if(a1 % != a2 % ){
if(a1 * a1 - * b1 > a2 * a2 - * b2 && a1 % ){
ans1 = ( - a1) / ;
ans2 = -a2 / ;
return true;
}
else if(a1 * a1 - * b1 < a2 * a2 - * b2 && a2 % ){
ans2 = ( - a2) / ;
ans1 = -a1 / ;
return true;
}
else return false;
}
return false;
}
else{
for(int i = ; i * i < sub; i++){
if(!(sub % i) && !((sub / i + i) % ) && !((i - sub / i) % )){
LL T = (sub / i + i) / ;
LL t = (i - sub / i) / ;
if(a1 * a1 - * b1 < a2 * a2 - * b2)swap(T, t);
if(!((T + a1) % ) && !((t + a2) % )){
ans1 = -(a1 + T) / ;
ans2 = -(a2 + t) / ;
return true;
}
}
}
return false;
}
} void work()
{
for(int i = ; i < ; i++){
for(int j = i + ; j < ; j++){
if(solve(a[i], b[i], a[j], b[j])){
if(i == )
{
printf("%lld %lld %lld\n", ans1, j == ?ans2:, j==?:ans2);
//return;
}
else{
printf("0 %lld %lld\n", ans1, ans2);
//return ;
}
return;
}
}
}
} int main()
{
scanf("%d", &t);
while(t--){
for(int i = ; i < ; i++){
scanf("%lld%lld", &a[i], &b[i]);
}
work();
} return ;
}

CCPC-Wannafly Winter Camp Day7 D---二次函数【数论】【构造】的更多相关文章

  1. 2020 CCPC Wannafly Winter Camp Day1 C. 染色图

    2020 CCPC Wannafly Winter Camp Day1 C. 染色图 定义一张无向图 G=⟨V,E⟩ 是 k 可染色的当且仅当存在函数 f:V↦{1,2,⋯,k} 满足对于 G 中的任 ...

  2. CCPC Wannafly Winter Camp Div2 部分题解

    Day 1, Div 2, Prob. B - 吃豆豆 题目大意 wls有一个\(n\)行\(m\)列的棋盘,对于第\(i\)行第\(j\)列的格子,每过\(T[i][j]\)秒会在上面出现一个糖果, ...

  3. 2020 CCPC Wannafly Winter Camp Day1 Div.1&amp F

    #include<bits/stdc++.h> #define forn(i, n) for (int i = 0; i < int(n); i++) #define fore(i, ...

  4. 2020 CCPC Wannafly Winter Camp Day1 - I. K小数查询(分块)

    题目链接:K小数查询 题意:给你一个长度为$n$序列$A$,有$m$个操作,操作分为两种: 输入$x,y,c$,表示对$i\in[x,y] $,令$A_{i}=min(A_{i},c)$ 输入$x,y ...

  5. 2020 CCPC Wannafly Winter Camp Day2-K-破忒头的匿名信

    题目传送门 sol:先通过AC自动机构建字典,用$dp[i]$表示长串前$i$位的最小代价,若有一个单词$s$是长串的前$i$项的后缀,那么可以用$dp[i - len(s)] + val(s)$转移 ...

  6. 2020 CCPC Wannafly Winter Camp Day1-F-乘法

    题目传送门 sol:二分答案$K$,算大于$K$的乘积有多少个.关键在于怎么算这个个数,官方题解上给出的复杂度是$O(nlogn)$,那么计算个数的复杂度是$O(n)$的.感觉写着有点困难,自己写了一 ...

  7. 2019 wannafly winter camp

    2019 wannafly winter camp Name Rank Solved A B C D E F G H I J K day1 9 5/11 O O O O O day2 5 3/11 O ...

  8. 2019 wannafly winter camp day 3

    2019 wannafly winter camp day 3 J 操作S等价于将S串取反,然后依次遍历取反后的串,每次加入新字符a,当前的串是T,那么这次操作之后的串就是TaT.这是第一次转化. 涉 ...

  9. 线段树优化建图(cf787d, 2019Wannafly Winter Camp Day7 Div1 E)

    线段树优化建图,用于区间到区间建边时降低空间复杂度 建立两颗线段树,一颗in, 代表进入这个区间,一颗out,代表从这个区间出去 in树从父亲向儿子建边,代表宏观进入整个区间,不向下寻找 out树从儿 ...

随机推荐

  1. weex开发错误汇总

    weex run serve 报UglifyJS错 ANDROID_HOME环境变量 weex build android需要ANDROID_HOME, 请配置 D:\adt-windows-x86_ ...

  2. CentOS 7安装nVIDIA显卡驱动程序

    1. 到http://www.geforce.cn/drivers,根据显卡的型号,选择下载相应的驱动程序,一般是.run文件: 2. 运行下载的.run文件,会提示X Server正在运行,不能安装 ...

  3. Lua:Nginx Lua环境配置,第一个Nginx Lua代码

    一.编译安装LuaJIT Lua:编译安装LuaJIT,第一个Lua程序 http://blog.csdn.net/guowenyan001/article/details/48250427 二.下载 ...

  4. Spark 准备篇-基本原理

    本章内容: 待整理 参考文献: <深入理解SPARK:核心思想与源码分析>(第2章) Spark的作业提交及运行流程的异同

  5. ab压力测试工具的简单使用

    ab是一种用于测试Apache超文本传输协议(HTTP)服务器的工具.apache自带ab工具,可以测试 apache.IIs.tomcat.nginx等服务器 但是ab没有Jmeter.Loadru ...

  6. Nginx 限制访问速率

    本文测试的nginx版本为nginx version: nginx/1.12.2 Nginx 提供了 limit_rate 和limit_rate_after,举个例子来说明一下在需要限速的站点 se ...

  7. vue项目使用webpack loader把px转换为rem

    下载lib-flexible https://github.com/amfe/lib-flexible npm i lib-flexible --save 在main.js中引入lib-flexibl ...

  8. 实现A星算法

    [更新] 稍微将A*算法进行修正,使用BFS(按F值对open表排序),另外,新增评估函数,用来测量当前点到终点的线段上的随机某一点是否是墙或已访问结点,是的话返回1,否则返回0. function ...

  9. Python访问MongoDB,并且转换成Dataframe

    #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2018/7/13 11:10 # @Author : baoshan # @Site ...

  10. 基于CSS3动态背景登录框代码

    基于CSS3动态背景登录框代码.这是一款基于jQuery+CSS3实现的带有动画效果的动态背景登陆框特效.效果图如下: 在线预览   源码下载 实现的代码. html代码: <div class ...