题意:

每个电脑需要P个组成部分,现有N的机器,每个机器都可以对电脑进行加工,不过加工的前提是某些部分已经存在,加工后会增加某些部分。且在单位时间内,每个机器的加工都有一个最大加工容量,求能得到的最大的流量,并且输出流经的所有路径。

思路:

最大流,EK算法。先建图,这里用邻接矩阵能比较简洁,由于每个机器(点)有权值,所以拆点,中间由与其权值想等的边连接,然后两两匹配,看是否能构成边。

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int Max = ;
const int eMax = ;
const int inf = 0x3f3f3f3f; struct
{
int w, in[], out[];
}mac[Max]; struct
{
int v, ini_w, w, re, next;
}edge[eMax]; int p, n, max_flow, num,k, edgeHead[Max],que[Max], pre[Max];
bool vis[Max]; void addedge(int u, int v, int w)
{
edge[k].v = v;
edge[k].ini_w = edge[k].w = w;
edge[k].next = edgeHead[u];
edge[k].re = k+;
edgeHead[u] = k ++;
edge[k].v = u;
edge[k].ini_w = edge[k].w = ;
edge[k].next = edgeHead[v];
edge[k].re = k-;
edgeHead[v] = k ++;
} int bfs()
{
int head, tail, i, u, v;
memset(vis, , sizeof(vis));
head = tail = ;
que[tail ++] = ;
vis[] = true;
while(tail > head){
u = que[head ++];
for(i = edgeHead[u]; i != ; i = edge[i].next){
v = edge[i].v;
if(!vis[v] && edge[i].w){
pre[v] = i;
if(v == *n+) return true;
que[tail ++] = v;
vis[v] = true;
}
}
}
return false;
} void end()
{
int u, p, sum = inf;
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
sum = min(sum, edge[p].w);
}
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
edge[p].w -= sum;
edge[edge[p].re].w += sum;
}
max_flow += sum;
} int main()
{
int i, j, u, m;
bool flag;
cin>>p>>n;
for(k = , i = ; i <= n; i ++)
{
cin>>mac[i].w;
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].in[j];
if(mac[i].in[j] == ) flag = false; // 这里要注意,0020也可以连源点,与汇点不同!
}
if(flag) addedge(, i, inf);
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].out[j];
if(mac[i].out[j] != ) flag = false;
}
if(flag) addedge(n+i, *n+, inf);
}
for(i = ; i <= n; i ++)
{
addedge(i, n+i, mac[i].w); // 拆点。
for(j = ; j <= n; j ++)
{
if(i == j) continue;
flag = true;
for(m = ; m < p; m ++)
if(mac[j].in[m] != && mac[j].in[m] != mac[i].out[m])
{
flag = false;
break;
}
if(flag) addedge(n+i, j, inf);
}
}
max_flow = , num = ;
while(bfs()) end();
for(u = n+; u < *n+ ; u ++) // 流经路径的输出,用邻接矩阵会更简洁。
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
num ++;
cout<<max_flow<<" "<<num<<endl;
for(u = n+; u < *n+ ; u ++)
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
cout<<u-n<<" "<<edge[i].v<<" "<<edge[i].ini_w - edge[i].w<<endl;
return ;
}

POJ3436 ACM Computer Factory【EK算法】的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  3. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  4. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  5. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  6. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  7. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  8. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  9. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. Redis无法保存ef复杂对象

    最近项目需要使用redis. 然后我就满怀激情开始处理数据层了.在原来查询数据的基础上,有封装了一个redis缓存层. 结果在redis保存ef对象的时候,发现了一个非常尴尬的问题. model: p ...

  2. 【转】linux环境内存分配原理 malloc info

    Linux的虚拟内存管理有几个关键概念: Linux 虚拟地址空间如何分布?malloc和free是如何分配和释放内存?如何查看堆内内存的碎片情况?既然堆内内存brk和sbrk不能直接释放,为什么不全 ...

  3. WebSocket安卓客户端实现详解(三)–服务端主动通知

    WebSocket安卓客户端实现详解(三)–服务端主动通知 本篇依旧是接着上一篇继续扩展,还没看过之前博客的小伙伴,这里附上前几篇地址 WebSocket安卓客户端实现详解(一)–连接建立与重连 We ...

  4. 如何同时修改SharePoint帐号和AD帐号的密码 - 批量修改SharePoint Managed Account

    cls if ((Get-PSSnapin "Microsoft.SharePoint.PowerShell" -ErrorAction SilentlyContinue) -eq ...

  5. 搭建gulp脚手架

    前段时间刚好在开发公司的首页,使用的是gulp工作流,gulp相对于webpack而言,配置简单,也更加直观(很符合直觉),日常开发一些静态页面.html5专题也足够,这里把遇到的坑与实践经验记录一下 ...

  6. SQLite 学习笔记(一)

      (1)创建数据库   在命令行中切换到sqlite.exe所在的文件夹   在命令中键入sqlite3 test.db;即可创建了一个名为test.db的数据库   由于此时的数据库中没有任何表及 ...

  7. CDQZ多校集训记

    20171218 DAY0 初相逢 今天的阳光很好,确实好极了.下午开始时,mercer说门外站了一堆人,我看都不用看就知道是衡水的.衡水人,怎么说呢,觉得还是挺不一样的.不知道像凡哥和超哥这种奇异的 ...

  8. 【POJ3694】Network

    题目大意:给定一个 N 个点,M 条边的无向图,支持 Q 次操作,每次可以向该无向图中加入一条边,并需要回答当前无向图中桥的个数. 题解:(暴力:Q 次 Tarjan) 先进行一次 Tarjan 求出 ...

  9. 获取EasyUI的treegrid的checkbox所有已勾选的数据

    EasyUI为TreeGrid的已勾选节点,未勾选节点,只勾选部分子节点的父节点分别添加了三个不同的样式,如下:样式一:tree-checkbox2 有子节点被选中样式二:tree-checkbox1 ...

  10. random模块(十九)

    1 ).random() 返回0<=n<1之间的随机实数n: 2 ).choice(seq) 从序列seq中返回随机的元素: 3 ).getrandbits(n) 以长整型形式返回n个随机 ...