题意:

每个电脑需要P个组成部分,现有N的机器,每个机器都可以对电脑进行加工,不过加工的前提是某些部分已经存在,加工后会增加某些部分。且在单位时间内,每个机器的加工都有一个最大加工容量,求能得到的最大的流量,并且输出流经的所有路径。

思路:

最大流,EK算法。先建图,这里用邻接矩阵能比较简洁,由于每个机器(点)有权值,所以拆点,中间由与其权值想等的边连接,然后两两匹配,看是否能构成边。

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int Max = ;
const int eMax = ;
const int inf = 0x3f3f3f3f; struct
{
int w, in[], out[];
}mac[Max]; struct
{
int v, ini_w, w, re, next;
}edge[eMax]; int p, n, max_flow, num,k, edgeHead[Max],que[Max], pre[Max];
bool vis[Max]; void addedge(int u, int v, int w)
{
edge[k].v = v;
edge[k].ini_w = edge[k].w = w;
edge[k].next = edgeHead[u];
edge[k].re = k+;
edgeHead[u] = k ++;
edge[k].v = u;
edge[k].ini_w = edge[k].w = ;
edge[k].next = edgeHead[v];
edge[k].re = k-;
edgeHead[v] = k ++;
} int bfs()
{
int head, tail, i, u, v;
memset(vis, , sizeof(vis));
head = tail = ;
que[tail ++] = ;
vis[] = true;
while(tail > head){
u = que[head ++];
for(i = edgeHead[u]; i != ; i = edge[i].next){
v = edge[i].v;
if(!vis[v] && edge[i].w){
pre[v] = i;
if(v == *n+) return true;
que[tail ++] = v;
vis[v] = true;
}
}
}
return false;
} void end()
{
int u, p, sum = inf;
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
sum = min(sum, edge[p].w);
}
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
edge[p].w -= sum;
edge[edge[p].re].w += sum;
}
max_flow += sum;
} int main()
{
int i, j, u, m;
bool flag;
cin>>p>>n;
for(k = , i = ; i <= n; i ++)
{
cin>>mac[i].w;
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].in[j];
if(mac[i].in[j] == ) flag = false; // 这里要注意,0020也可以连源点,与汇点不同!
}
if(flag) addedge(, i, inf);
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].out[j];
if(mac[i].out[j] != ) flag = false;
}
if(flag) addedge(n+i, *n+, inf);
}
for(i = ; i <= n; i ++)
{
addedge(i, n+i, mac[i].w); // 拆点。
for(j = ; j <= n; j ++)
{
if(i == j) continue;
flag = true;
for(m = ; m < p; m ++)
if(mac[j].in[m] != && mac[j].in[m] != mac[i].out[m])
{
flag = false;
break;
}
if(flag) addedge(n+i, j, inf);
}
}
max_flow = , num = ;
while(bfs()) end();
for(u = n+; u < *n+ ; u ++) // 流经路径的输出,用邻接矩阵会更简洁。
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
num ++;
cout<<max_flow<<" "<<num<<endl;
for(u = n+; u < *n+ ; u ++)
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
cout<<u-n<<" "<<edge[i].v<<" "<<edge[i].ini_w - edge[i].w<<endl;
return ;
}

POJ3436 ACM Computer Factory【EK算法】的更多相关文章

  1. POJ3436 ACM Computer Factory —— 最大流

    题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS   Memory Limit: 655 ...

  2. POJ-3436 ACM Computer Factory(网络流EK)

    As you know, all the computers used for ACM contests must be identical, so the participants compete ...

  3. POJ3436 ACM Computer Factory 【最大流】

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5412   Accepted: 1 ...

  4. poj3436 ACM Computer Factory, 最大流,输出路径

    POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...

  5. POJ3436 ACM Computer Factory(最大流/Dinic)题解

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8944   Accepted: 3 ...

  6. poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)

    ACM Computer Factory Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10940   Accepted:  ...

  7. POJ3436 ACM Computer Factory(最大流)

    题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...

  8. POJ-3436 ACM Computer Factory 最大流 为何拆点

    题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...

  9. POJ-3436:ACM Computer Factory (Dinic最大流)

    题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...

随机推荐

  1. BZOJ1036[ZJOI2008]树的统计——树链剖分+线段树

    题目描述 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成一些操作: I. CHANGE u t : 把结点u的权值改为t II. QMAX u v ...

  2. BZOJ4196[Noi2015]软件包管理器——树链剖分+线段树

    题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...

  3. OpenAI 开源机器人模拟 Python 库,并行模拟处理速度提升400%

    10000da.cnvboyule.cnjiaeidaypt.cn  在过去一年的研究中,OpenAI团队开源一个使用 MuJoCoengine开发的用于机器人模拟的高性能Python库.雷锋网了解到 ...

  4. 架构师成长之路7.1 CDN理论

    点击返回架构师成长之路 架构师成长之路7.1 CDN理论 CDN,Content Distribute Network,内容分发网络:CDN解决的是如何将数据快速可靠从源站传递到用户的问题.用户获取数 ...

  5. luogu1970 花匠(dp)

    设f1[i]表示以1..i中某个合法序列的长度,而且最后一位是较大的 f2[i]表示以1..i中某个合法序列的长度,而且最后一位是较小的 那么就有$f1[i]=max\{f2[j]+1\},(j< ...

  6. bzoj1003/luogu1772 物流运输 (dijkstra+dp)

    先求出某一段时间[i,j]一直用同一个路径的最短路,乘上天数,记作cost[i,j] 那就可以设f[i]是前i天的最小代价,f[i]=f[j]+cost[j+1,i]+K #include<bi ...

  7. Java NIO -- DatagramChannel

    Java NIO中的DatagramChannel是一个能收发UDP包的通道.操作步骤:打开 DatagramChannel接收/发送数据 代码举例: package com.soyoungboy.n ...

  8. redis访问安全加固

    目录 redis漏洞 入侵特征 安全隐患 redis安全规范 禁止root用户启动 限制redis文件目录访问权限 开启密码认证,设置复杂密码 禁用或重命名危险命令 设置允许监听地址,不要使用0.0. ...

  9. 2018 ACM 网络选拔赛 沈阳赛区

    B. Call of Accepted #include <cstdio> #include <cstdlib> #include <cmath> #include ...

  10. Pentaho data integration(kettle) 在Mac上启动不了

    环境 MacOS Mojave (10.14.1) Pentaho Data Integration 8.2 Java 8 现象 从官方下载下来最新的安装包,解压之后,双击Data Integrati ...