POJ3436 ACM Computer Factory【EK算法】
题意:
每个电脑需要P个组成部分,现有N的机器,每个机器都可以对电脑进行加工,不过加工的前提是某些部分已经存在,加工后会增加某些部分。且在单位时间内,每个机器的加工都有一个最大加工容量,求能得到的最大的流量,并且输出流经的所有路径。
思路:
最大流,EK算法。先建图,这里用邻接矩阵能比较简洁,由于每个机器(点)有权值,所以拆点,中间由与其权值想等的边连接,然后两两匹配,看是否能构成边。
代码:
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int Max = ;
const int eMax = ;
const int inf = 0x3f3f3f3f; struct
{
int w, in[], out[];
}mac[Max]; struct
{
int v, ini_w, w, re, next;
}edge[eMax]; int p, n, max_flow, num,k, edgeHead[Max],que[Max], pre[Max];
bool vis[Max]; void addedge(int u, int v, int w)
{
edge[k].v = v;
edge[k].ini_w = edge[k].w = w;
edge[k].next = edgeHead[u];
edge[k].re = k+;
edgeHead[u] = k ++;
edge[k].v = u;
edge[k].ini_w = edge[k].w = ;
edge[k].next = edgeHead[v];
edge[k].re = k-;
edgeHead[v] = k ++;
} int bfs()
{
int head, tail, i, u, v;
memset(vis, , sizeof(vis));
head = tail = ;
que[tail ++] = ;
vis[] = true;
while(tail > head){
u = que[head ++];
for(i = edgeHead[u]; i != ; i = edge[i].next){
v = edge[i].v;
if(!vis[v] && edge[i].w){
pre[v] = i;
if(v == *n+) return true;
que[tail ++] = v;
vis[v] = true;
}
}
}
return false;
} void end()
{
int u, p, sum = inf;
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
sum = min(sum, edge[p].w);
}
for(u = *n+; u != ; u = edge[edge[p].re].v){
p = pre[u];
edge[p].w -= sum;
edge[edge[p].re].w += sum;
}
max_flow += sum;
} int main()
{
int i, j, u, m;
bool flag;
cin>>p>>n;
for(k = , i = ; i <= n; i ++)
{
cin>>mac[i].w;
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].in[j];
if(mac[i].in[j] == ) flag = false; // 这里要注意,0020也可以连源点,与汇点不同!
}
if(flag) addedge(, i, inf);
flag = true;
for(j = ; j < p; j ++)
{
cin>>mac[i].out[j];
if(mac[i].out[j] != ) flag = false;
}
if(flag) addedge(n+i, *n+, inf);
}
for(i = ; i <= n; i ++)
{
addedge(i, n+i, mac[i].w); // 拆点。
for(j = ; j <= n; j ++)
{
if(i == j) continue;
flag = true;
for(m = ; m < p; m ++)
if(mac[j].in[m] != && mac[j].in[m] != mac[i].out[m])
{
flag = false;
break;
}
if(flag) addedge(n+i, j, inf);
}
}
max_flow = , num = ;
while(bfs()) end();
for(u = n+; u < *n+ ; u ++) // 流经路径的输出,用邻接矩阵会更简洁。
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
num ++;
cout<<max_flow<<" "<<num<<endl;
for(u = n+; u < *n+ ; u ++)
for(i = edgeHead[u]; i != ; i = edge[i].next)
if(edge[i].v > && edge[i].v <= n && edge[i].ini_w > edge[i].w)
cout<<u-n<<" "<<edge[i].v<<" "<<edge[i].ini_w - edge[i].w<<endl;
return ;
}
POJ3436 ACM Computer Factory【EK算法】的更多相关文章
- POJ3436 ACM Computer Factory —— 最大流
题目链接:https://vjudge.net/problem/POJ-3436 ACM Computer Factory Time Limit: 1000MS Memory Limit: 655 ...
- POJ-3436 ACM Computer Factory(网络流EK)
As you know, all the computers used for ACM contests must be identical, so the participants compete ...
- POJ3436 ACM Computer Factory 【最大流】
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5412 Accepted: 1 ...
- poj3436 ACM Computer Factory, 最大流,输出路径
POJ 3436 ACM Computer Factory 电脑公司生产电脑有N个机器.每一个机器单位时间产量为Qi. 电脑由P个部件组成,每一个机器工作时仅仅能把有某些部件的半成品电脑(或什么都没有 ...
- POJ3436 ACM Computer Factory(最大流/Dinic)题解
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 8944 Accepted: 3 ...
- poj-3436.ACM Computer Factory(最大流 + 多源多汇 + 结点容量 + 路径打印 + 流量统计)
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 10940 Accepted: ...
- POJ3436 ACM Computer Factory(最大流)
题目链接. 分析: 题意很难懂. 大体是这样的:给每个点的具体情况,1.容量 2.进入状态 3.出去状态.求最大流. 因为有很多点,所以如果一个点的出去状态满足另一个点的进入状态,则这两个点可以连一条 ...
- POJ-3436 ACM Computer Factory 最大流 为何拆点
题目链接:https://cn.vjudge.net/problem/POJ-3436 题意 懒得翻,找了个题意. 流水线上有N台机器装电脑,电脑有P个部件,每台机器有三个参数,产量,输入规格,输出规 ...
- POJ-3436:ACM Computer Factory (Dinic最大流)
题目链接:http://poj.org/problem?id=3436 解题心得: 题目真的是超级复杂,但解出来就是一个网络流,建图稍显复杂.其实提炼出来就是一个工厂n个加工机器,每个机器有一个效率w ...
随机推荐
- Redis无法保存ef复杂对象
最近项目需要使用redis. 然后我就满怀激情开始处理数据层了.在原来查询数据的基础上,有封装了一个redis缓存层. 结果在redis保存ef对象的时候,发现了一个非常尴尬的问题. model: p ...
- 【转】linux环境内存分配原理 malloc info
Linux的虚拟内存管理有几个关键概念: Linux 虚拟地址空间如何分布?malloc和free是如何分配和释放内存?如何查看堆内内存的碎片情况?既然堆内内存brk和sbrk不能直接释放,为什么不全 ...
- WebSocket安卓客户端实现详解(三)–服务端主动通知
WebSocket安卓客户端实现详解(三)–服务端主动通知 本篇依旧是接着上一篇继续扩展,还没看过之前博客的小伙伴,这里附上前几篇地址 WebSocket安卓客户端实现详解(一)–连接建立与重连 We ...
- 如何同时修改SharePoint帐号和AD帐号的密码 - 批量修改SharePoint Managed Account
cls if ((Get-PSSnapin "Microsoft.SharePoint.PowerShell" -ErrorAction SilentlyContinue) -eq ...
- 搭建gulp脚手架
前段时间刚好在开发公司的首页,使用的是gulp工作流,gulp相对于webpack而言,配置简单,也更加直观(很符合直觉),日常开发一些静态页面.html5专题也足够,这里把遇到的坑与实践经验记录一下 ...
- SQLite 学习笔记(一)
(1)创建数据库 在命令行中切换到sqlite.exe所在的文件夹 在命令中键入sqlite3 test.db;即可创建了一个名为test.db的数据库 由于此时的数据库中没有任何表及 ...
- CDQZ多校集训记
20171218 DAY0 初相逢 今天的阳光很好,确实好极了.下午开始时,mercer说门外站了一堆人,我看都不用看就知道是衡水的.衡水人,怎么说呢,觉得还是挺不一样的.不知道像凡哥和超哥这种奇异的 ...
- 【POJ3694】Network
题目大意:给定一个 N 个点,M 条边的无向图,支持 Q 次操作,每次可以向该无向图中加入一条边,并需要回答当前无向图中桥的个数. 题解:(暴力:Q 次 Tarjan) 先进行一次 Tarjan 求出 ...
- 获取EasyUI的treegrid的checkbox所有已勾选的数据
EasyUI为TreeGrid的已勾选节点,未勾选节点,只勾选部分子节点的父节点分别添加了三个不同的样式,如下:样式一:tree-checkbox2 有子节点被选中样式二:tree-checkbox1 ...
- random模块(十九)
1 ).random() 返回0<=n<1之间的随机实数n: 2 ).choice(seq) 从序列seq中返回随机的元素: 3 ).getrandbits(n) 以长整型形式返回n个随机 ...