LOJ#2427. 「POI2010」珍珠项链 Beads
题目地址
题解
不会算复杂度真是致命,暴力枚举k每次计算是n/2+n/3+n/4+...+1的,用调和级数算是\(O(nlogn)\)的...
如果写哈希表的话能够\(O(nlogn)\),或者直接拿个set存就\(O(nlognlogn)\)。
进制要选好,233不能过,2333过的点会多一点,然后选13131才过了
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <set>
typedef unsigned long long ull;
const int N = 200010;
const ull base = 13131;
using namespace std;
int Ans, n, a[N], ans[N], cnt = 0;
ull h1[N], h2[N], p[N];
set<ull> st;
ull cal1(int l, int r) { return h1[r] - h1[l - 1] * p[r - l + 1]; }
ull cal2(int l, int r) { return h2[l] - h2[r + 1] * p[r - l + 1]; }
int ins(int x) {
st.clear();
for(int l = 1; l + x - 1 <= n; l += x) {
int r = l + x - 1;
ull ha = min(cal1(l, r), cal2(l, r));
st.insert(ha);
}
return (int)st.size();
}
int main() {
scanf("%d", &n); p[0] = 1;
for(int i = 1; i <= n; ++i) scanf("%d", &a[i]);
for(int i = 1; i <= n; ++i) h1[i] = h1[i - 1] * base + a[i], p[i] = p[i - 1] * base;
for(int i = n; i; i--) h2[i] = h2[i + 1] * base + a[i];
for(int i = 1; i <= n; ++i) {
int num = ins(i);
if(num > Ans) { Ans = num; cnt = 0; }
if(num == Ans) ans[++cnt] = i;
}
printf("%d %d\n", Ans, cnt);
for(int i = 1; i <= cnt; ++i) printf("%d ", ans[i]);
return 0;
}
LOJ#2427. 「POI2010」珍珠项链 Beads的更多相关文章
- LOJ#2452. 「POI2010」反对称 Antisymmetry
题目描述 对于一个 \(0/1\) 字符串,如果将这个字符串 \(0\) 和 \(1\) 取反后,再将整个串反过来和原串一样,就称作「反对称」字符串.比如 \(00001111\) 和 \(01010 ...
- Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完 ...
- Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \ ...
- Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\t ...
- Loj #3089. 「BJOI2019」奥术神杖
Loj #3089. 「BJOI2019」奥术神杖 题目描述 Bezorath 大陆抵抗地灾军团入侵的战争进入了僵持的阶段,世世代代生活在 Bezorath 这片大陆的精灵们开始寻找远古时代诸神遗留的 ...
- Loj #2542. 「PKUWC2018」随机游走
Loj #2542. 「PKUWC2018」随机游走 题目描述 给定一棵 \(n\) 个结点的树,你从点 \(x\) 出发,每次等概率随机选择一条与所在点相邻的边走过去. 有 \(Q\) 次询问,每次 ...
- Loj #3059. 「HNOI2019」序列
Loj #3059. 「HNOI2019」序列 给定一个长度为 \(n\) 的序列 \(A_1, \ldots , A_n\),以及 \(m\) 个操作,每个操作将一个 \(A_i\) 修改为 \(k ...
- Loj #3056. 「HNOI2019」多边形
Loj #3056. 「HNOI2019」多边形 小 R 与小 W 在玩游戏. 他们有一个边数为 \(n\) 的凸多边形,其顶点沿逆时针方向标号依次为 \(1,2,3, \ldots , n\).最开 ...
- Loj #3055. 「HNOI2019」JOJO
Loj #3055. 「HNOI2019」JOJO JOJO 的奇幻冒险是一部非常火的漫画.漫画中的男主角经常喜欢连续喊很多的「欧拉」或者「木大」. 为了防止字太多挡住漫画内容,现在打算在新的漫画中用 ...
随机推荐
- META标签之关键词、网页描述设置帮助SEO网站优化(转)
ASP.NET 4.0 Web Forms针对SEO改进措施中有一个是在Page类中加了2个新属性:MetaKeywords 和MetaDescription,它们使得在后台代码类中用编程的手法设 ...
- mysql使用navicat编写调用存储过程
在Navicat里面,找到函数,右键,新建函数,选择过程,如果有参数就填写函数,如果没有就直接点击完成 在BEGIN......END中间编写要执行的sql语句,例如下面存储过程取名为pro_data ...
- spiderUI窗口过小解决
复制以下代码,直接替换此css样式即可: C:\Users\Administrator\AppData\Local\Programs\Python\Python37\Lib\site-packages ...
- Java国际化号码验证方法,国内手机号正则表达式
Java国际化号码验证方法,国内手机号正则表达式 中国电信号段 133.149.153.173.177.180.181.189.199 中国联通号段 130.131.132.145.155.156.1 ...
- spring 线程安全
http://www.cnblogs.com/doit8791/p/4093808.html 写的真的好
- POJ 1330 Nearest Common Ancestors(LCA Tarjan算法)
题目链接:http://poj.org/problem?id=1330 题意:给定一个n个节点的有根树,以及树中的两个节点u,v,求u,v的最近公共祖先. 数据范围:n [2, 10000] 思路:从 ...
- ORM for Net主流框架汇总
ORM框架:Object/Relation Mapping(对象/关系 映射)的缩写,易于理解的模型化数据的方法.简单的说就是把数据库的关系型数据类型转换为用对象型程序控制的框架类型. 框架优缺点分析 ...
- 大数据学习路线分享-Hbase shell的基本操作完整流程
HBase的命令行工具,最简单的接口,适合HBase管理使用,可以使用shell命令来查询HBase中数据的详细情况.安装完HBase之后,启动hadoop集群(利用hdfs存储),启动zookeep ...
- java使用ssh远程操作linux 提交spark jar
maven依赖 <!--Java ssh-2 --><dependency> <groupId>ch.ethz.ganymed</groupId> &l ...
- java加载配置文件信息
#基金数据存放根目录fund_save_root_path=E:/fundCrawling #龙虎榜数据存放根目录long_hu_root_path=E:/longHuCrawling #巨潮数据存放 ...