G. The Declaration of Independence
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

In 1776, a Committee of Five was chosen to draft the Declaration of Independence of the USA, among them John Adams, Thomas Jefferson and Benjamin Franklin. From June 11 to July 5 they worked tirelessly to write such important document.

It wasn't written correctly in the first attempt, and many many changes had to be made. Since in that time there weren't such great and time-saving utilities like git and version control, they had a very simple but time consuming way to keep old versions of the document.

Suppose Thomas Jefferson wanted to add a line to a version i of the document. Instead of changing the actual document in version i, he would use a letter copying press, a machine just invented by James Watt just around that time, to copy the version i to a new sheet of paper, and then would modify this new sheet of paper. This paper would then be stored so it could be copied later. As each modification creates a new version of the document, the kth modification will create the version k of the document. You can assume the version 0 of the document is an empty piece of paper.

As everything was written in ink and the committee doesn't like to contradict itself, each modification could only add some lines to the end of the document, or erase some lines from the beginning of the document.

Your task is to simulate the making of the Declaration of Independence. Each sentence is represented as an integer number. You need to process the following queries:

  • E v x — Copy the document with version v, then add sentence x to the end of the copied document
  • D v — Copy the document with version v, then remove the first sentence of the copied document

Queries are numbered from one. The document with version 0 is empty.

Input

In the first line an integer Q, the number of queries. Each of the next Q lines has a query, in the format given in the statement.

Limits

  • 1 ≤ Q ≤ 105
  • In the ith query it is guaranteed that 0 ≤ v < i
  • For each query of type E, x will fit in a 32-bit signed integer
  • For each query of type D, it is guaranteed the document will not be empty during the removal of the first sentence
Output

For each query of type D, print the sentence removed.

Example
input
8
E 0 10
E 0 -10
D 2
D 1
E 2 5
D 5
D 6
D 2
output
-10
10
-10
5
-10

题意:q个操作,你需要在i是一个队列;

   E v x 表示在第v个队列插入x,形成第i个队列;

   D v 表示去掉v的对头,形成第i个队列;

思路:主席树,利用线段树第i个点,存储队列第(i-对头的位置)个元素的大小;

   利用L,R数组表示这个队列的左端在L[i],右端在R[i]的位置;

  

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll long long
#define pi (4*atan(1.0))
#define eps 1e-14
#define bug(x) cout<<"bug"<<x<<endl;
const int N=1e5+,M=1e6+,inf=1e9+;
const ll INF=1e18+,mod=1e9+;
struct SGT
{
int ls[N*],rs[N*],rt[N*],L[N*],R[N*],num[N*];
int tot;
void init()
{
tot=;
memset(num,,sizeof(num));
memset(ls,,sizeof(ls));
memset(rs,,sizeof(rs));
memset(rt,,sizeof(rt));
memset(L,,sizeof(L));
memset(R,,sizeof(R));
}
void build(int l,int r,int &pos)
{
pos=++tot;
if(l==r)return;
int mid=(l+r)>>;
build(l,mid,ls[pos]);
build(mid+,r,rs[pos]);
}
void update(int rt,int p,int c,int l,int r,int &pos)
{
pos=++tot;
ls[pos]=ls[rt];
rs[pos]=rs[rt];
if(l==r)
{
num[pos]=c;
return;
}
int mid=(l+r)>>;
if(p<=mid)update(ls[rt],p,c,l,mid,ls[pos]);
else update(rs[rt],p,c,mid+,r,rs[pos]);
}
int query(int p,int l,int r,int pos)
{
if(l==r) return num[pos];
int mid=(l+r)>>;
if(p<=mid)return query(p,l,mid,ls[pos]);
else return query(p,mid+,r,rs[pos]);
}
}tree;
char a[];
int main()
{ int q;
scanf("%d",&q);
//tree.init();
tree.build(,q,tree.rt[]);
tree.L[]=;
tree.R[]=;
for(int i=;i<=q;i++)
{
scanf("%s",a);
if(a[]=='E')
{
int v,x;
scanf("%d%d",&v,&x);
tree.L[i]=tree.L[v];
tree.R[i]=tree.R[v];
tree.update(tree.rt[v],++tree.R[i],x,,q,tree.rt[i]=tree.rt[v]);
}
else
{
int v;
scanf("%d",&v);
tree.L[i]=tree.L[v];
tree.R[i]=tree.R[v];
//cout<<tree.L[v]<<" "<<tree.R[v]<<endl;
printf("%d\n",tree.query(tree.L[i]++,,q,tree.rt[i]=tree.rt[v]));
}
}
return ;
}
/* 8
E 0 10
E 0 -10
D 2
D 1
E 2 5
D 5
D 6
D 2 */

GYM 101064 2016 USP Try-outs G. The Declaration of Independence 主席树的更多相关文章

  1. gym 101064 G.The Declaration of Independence (主席树)

    题目链接: 题意: n个操作,有两种操作: E p  c    在序号为p的队列尾部插入c得到新的队列,序号为i D p   查询并删除序号为p的队列顶部的元素,得到序号为i的新队列 思路: 需要查询 ...

  2. Gym 101064 D Black Hills golden jewels (二分)

    题目链接:http://codeforces.com/gym/101064/problem/D 问你两个数组合相加的第k大数是多少. 先sort数组,二分答案,然后判断其正确性(判断过程是枚举每个数然 ...

  3. 2016年省赛 G Triple Nim

    2016年省赛 G Triple Nimnim游戏,要求开始局面为先手必败,也就是异或和为0.如果n为奇数,二进制下最后一位只有两种可能1,1,1和1,0,0,显然异或和为1,所以方案数为0如果n为偶 ...

  4. 数据结构(主席树):HZOI 2016 采花

    [题目描述] 给定一个长度为n,包含c种颜色的序列,有m个询问,每次给出两个数l,r,表示询问区间[l,r]中有多少种颜色的出现次数不少于2次. 本题强制在线,对输入的l,r进行了加密,解密方法为: ...

  5. codeforces gym #101161E - ACM Tax(lca+主席树)

    题目链接: http://codeforces.com/gym/101161/attachments 题意: 给出节点数为$n$的树 有$q$次询问,输出$a$节点到$b$节点路程中,经过的边的中位数 ...

  6. bzoj4408 [Fjoi 2016]神秘数 & bzoj4299 Codechef FRBSUM 主席树+二分+贪心

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4299 https://lydsy.com/JudgeOnline/problem.php?id ...

  7. 牛客多校第三场 G Removing Stones(分治+线段树)

    牛客多校第三场 G Removing Stones(分治+线段树) 题意: 给你n个数,问你有多少个长度不小于2的连续子序列,使得其中最大元素不大于所有元素和的一半 题解: 分治+线段树 线段树维护最 ...

  8. codeforces Gym 100735 D、E、G、H、I

    http://codeforces.com/gym/100735 D题 直接暴力枚举 感觉这道题数据有点问题 为什么要先排下序才能过?不懂.. #include <stdio.h> #in ...

  9. 2016年省赛G题, Parenthesis

    Problem G: Parenthesis Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 398  Solved: 75[Submit][Status ...

随机推荐

  1. [转载]转,Oracle中关于处理小数点位数的几个函数,取小数位数,Oracle查询函数

    关于处理小数点位数的几个oracle函数() 1. 取四舍五入的几位小数 select round(1.2345, 3) from dual; 结果:1.235 2. 保留两位小数,只舍 select ...

  2. MVC 部署HTTPS网站

    一.项目配置 什么是全站HTTPS 全站HTTPS就是指整个网站的所有页面,所有资源全部使用HTTPS链接.当用户的某个请求是明文的HTTP时,应该通过HTTP状态码301永久重定向到对应的HTTPS ...

  3. Step3 SQL Server 通过备份文件初始化复制

    一.本文所涉及的内容(Contents) 本文所涉及的内容(Contents) 背景(Contexts) 搭建过程(Process) 注意事项(Attention) 疑问(Questions) 参考文 ...

  4. 大数据学习路线:Hadoop集群同步技术分享

    今天给大家带来的技术分享是——Hadoop集群同步. 一.同步方式 选择一个机器,作为时间服务器(这里选择hadoop01),所有的机器与这台集群时间进行定时的同步,比如,每隔十分钟,同步一次时间. ...

  5. vue 去掉路由中的#

    在router.js中修改, const router = new VueRouter({ mode: 'history', routes: [...] })

  6. APP端上传图片 - php接口

    $base64="iVBORw0KGgoAAAANSUhEUgAAABgAAAAYCAYAAADgdz34AAAABHNCSVQICAgIfAhkiAAAAbRJREFUSIntlDFPFF ...

  7. Nginx和PHP上传文件大小的限制

    Nginx client_max_body_size 80m; PHP php.ini file_uploads = on ; 是否允许通过HTTP上传文件的开关.默认为ON即是开 upload_tm ...

  8. redis 数据统计(用自增id防止同一秒并发过大没统计成功)

    Redis 缓存保存某段时间累加的数值,加入最大id防止同一秒并发过大,导致只统计了执行时同一秒的部分数据,而同一秒另一部分数据在下次累加时没有统计到缓存中 //coin总数 public funct ...

  9. vi/vim 命令速查手册

    vi 的基本概念 基本上vi可分为三种操作状态,分别是命令模式(Command mode).插入模式(Insert mode)和底线命令模式(Last line mode),各模式的功能区分如下: 1 ...

  10. 写给大忙人的nginx核心配置详解

    由于当前很多应该都是前后端分离了,同时大量的基于http的分布式和微服务架构,使得很多时候应用和不同项目组之间的系统相互来回调用,关系复杂.如果使用传统的做法,都在应用中进行各种处理和判断,不仅维护复 ...