FJNU2018低程A 逃跑路线(Lucas + 中国剩余定理 + LGV定理)题解
题目描述
输入
第二行两个3个正整数n,w,h(n<=100,w,h<=1e9)
接下来n行每行两个整数
ai,bi(ai,bi<=w)
输出
样例输入
1
2 4 2
1 2
3 4
样例输出
4
思路:
这里有一个结论,n个起点到n个终点的不相交路径的种数为:每个起点到每个终点的可能数组成的n*n的矩阵的行列式。
即求上矩阵行列式,其中e(ai,bi)代表从ai起点到bi终点的可能路径数量,行列式求解用高斯消元。
显然现在的问题是求解e。显然e(a[i],b[j])= (h - 1 + b[j] - a[i], b[j] - a[i])或者0。
但是a、b、h范围均为1e9,那么求解组合数需要用到Lucas定理,但是mod = 109 * 1000003,显然是个合数,那么需要先质因数分解(显然分好了),然后中国剩余定理合并。
参考:
HDU 5852:Intersection is not allowed!(行列式+逆元求组合数)
hdu 5446 Unknown Treasure(Lucas定理+中国剩余定理)
Update:被工程卡时间卡的的心态崩了,优化了一些地方:
ll w = M / m[i];
d = exgcd(m[i], w, x, y);
ret = (ret + modmul(modmul(y, w, M), a[i], M) ) % M;
这里很显然不用每次都求w的逆元,因为w确定m[i]确定,直接小费马求出来保存就行。
还有很多取模都可以去掉,因为不论是阶乘还是阶乘的逆元,我们打表的时候都是%1e6+3,也就是说(1e6+3)^3也就18位左右,long long最大19位,似乎可以去掉(雾...
然后一些开long long开成int,就能慢慢卡进1000ms了(逃
admin标程跑的速度比我快了3倍...不知道什么操作
代码(新):
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = * ;
const int INF = 0x3f3f3f3f;
int a[], b[];
ll e[][];
ll fac[][], inv[][];
ll modmul(ll a, ll b, ll p){
ll ret = ;
while(b) {
if(b & ) ret = ret + a;
if(ret >= p) ret -= p;
a <<= ;
if(a >= p) a -= p;
b >>= ;
}
return ret;
}
ll pmul(ll a, ll b, ll p){
ll ans = ;
a %= p;
while(b){
if(b & ) ans = ans * a % p;
a = a * a % p;
b >>= ;
}
return ans;
}
ll C(ll n, ll m, ll p, int i){
if(m > n) return ;
return fac[i][n] * inv[i][m] * inv[i][n - m] % p;
}
ll Lucas(ll n, ll m, ll p, int i){
if(m == ) return ;
if(n < p && m < p) return C(n, m, p, i);
return C(n % p, m % p, p, i) * Lucas(n / p, m / p, p, i) % p;
}
ll mm[] = {, };
ll remainder(ll a[], ll m[], int len){
ll x, y, ret = ;
ll M = MOD;
for (int i = ; i < len; i++){
ll w = M / m[i];
ret = (ret + a[i] * mm[i] * w) % M;
}
return ret;
}
ll guass(int n, ll p){
ll ans = , f = ;
for(int i = ; i <= n; i++){
for(int j = i + ; j <= n; j++){
int x = i, y = j;
while(e[y][i]){
ll t = e[x][i] / e[y][i];
for(int k = i; k <= n; k++)
e[x][k] = (e[x][k] - e[y][k] * t % p) % p;
swap(x,y);
}
if(x != i){
for(int k = ; k <= n; k++)
swap(e[i][k], e[j][k]);
f = -f;
}
}
ans = ans * e[i][i] % p;
if(ans == ) return ;
}
return (ans * f + p) % p;
}
void init(int x, int n){
fac[x][] = ;
for (ll i = ; i < n; i++) fac[x][i] = fac[x][i - ] * i % n;
inv[x][n - ] = pmul(fac[x][n - ], n - , n);
for (ll i = n - ; i >= ; i--) inv[x][i] = inv[x][i + ] * (i + ) % n;
}
ll lucas[];
ll pp[] = {, };
ll solve(ll n, ll m){
ll ret;
for(int i = ; i < ; i++){
lucas[i] = Lucas(n, m, pp[i], i);
}
ret = remainder(lucas, pp, );
return ret;
}
int main(){
init(, );
init(, );
int t;
scanf("%d", &t);
while(t--){
ll n, w, h;
scanf("%lld%lld%lld", &n, &w, &h);
for(int i = ; i <= n; i++)
scanf("%d%d", &a[i], &b[i]);
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
if(b[j] >= a[i]){
e[i][j] = solve(h - + b[j] - a[i], b[j] - a[i]);
}
else e[i][j] = ;
}
}
printf("%lld\n", guass(n, MOD));
}
return ;
}
代码:
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
typedef long long ll;
using namespace std;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = * ;
const int INF = 0x3f3f3f3f;
ll a[maxn], b[maxn];
ll e[][];
ll prime[maxn], p[maxn], pn;
ll fac[][];
ll pmul(ll a, ll b, ll p){
ll ans = ;
while(b){
if(b & ) ans = ans * a % p;
a = a * a % p;
b >>= ;
}
return ans;
}
ll modmul(ll a, ll b, ll p) {
ll ret = ;
while(b) {
if(b & ) ret = (ret + a) % p;
a = (a + a) % p;
b >>= ;
}
return ret;
}
ll Lucas(ll n, ll m, ll p, int i) {
ll ret=;
while(n && m) {
ll a = n%p, b = m%p;
if(a<b) return ;
ret = (ret * fac[i][a] * pmul(fac[i][b]*fac[i][a - b] % p, p-, p)) % p;
n/=p;
m/=p;
}
return ret;
} ll exgcd (ll a, ll b, ll &x, ll &y) {
if (!b) {
x = , y = ;
return a;
}
int ans = exgcd ( b , a % b , y , x );
y -= a / b * x;
return ans;
}
ll remainder(ll a[], ll m[], int len) {
ll d, x, y, ret = ;
ll M = ;
for (int i = ; i < len; i++) M *= m[i];
for (int i = ; i < len; i++) {
ll w = M / m[i];
d = exgcd(m[i], w, x, y);
ret = (ret + modmul(modmul(y, w, M), a[i], M) ) % M;
}
return (ret + M) % M;
}
ll guass(int n, ll MOD){
ll ans = , f = ;
for(int i = ; i <= n; i++){
for(int j = i + ; j <= n; j++){
int x = i, y = j;
while(e[y][i]){
ll t = e[x][i] / e[y][i];
for(int k = i; k <= n; k++)
e[x][k] = (e[x][k] - e[y][k] * 1LL * t % MOD) % MOD;
swap(x,y);
}
if(x != i){
for(int k = ; k <= n; k++)
swap(e[i][k], e[j][k]);
f = -f;
}
}
ans = ans * e[i][i] % MOD;
if(ans == ) return ;
}
return (ans * f + MOD) % MOD;
}
void init(){
memset(prime, , sizeof(prime));
pn = ;
for(ll i = ; i < maxn; i++){
if(!prime[i]){
p[pn++] = i;
for(ll j = i * i; j < maxn; j += i)
prime[i] = ;
}
}
fac[][] = ;
for(int i = ; i <= ; i++){
fac[][i] = (fac[][i-]*i) % ;
}
fac[][] = ;
for(ll i = ; i <= ; i++){
fac[][i] = (fac[][i-]*i) % ;
}
}
ll solve(ll n, ll m){
ll ret;
ll lucas[];
ll p[] = {, };
for(int i = ; i < ; i++){
lucas[i] = Lucas(n, m, p[i], i);
}
return ret = remainder(lucas, p, );
}
int main(){
init();
int t;
scanf("%d", &t);
while(t--){
ll n, w, h;
scanf("%lld%lld%lld", &n, &w, &h);
for(int i = ; i <= n; i++)
scanf("%lld%lld", &a[i], &b[i]);
for(int i = ; i <= n; i++){
for(int j = ; j <= n; j++){
if(b[j] >= a[i]){
e[i][j] = solve(h - + b[j] - a[i], b[j] - a[i]);
}
else e[i][j] = ;
}
}
printf("%lld\n", guass(n, MOD));
}
return ;
}
FJNU2018低程A 逃跑路线(Lucas + 中国剩余定理 + LGV定理)题解的更多相关文章
- Lucas+中国剩余定理 HDOJ 5446 Unknown Treasure
题目传送门 题意:很裸,就是求C (n, m) % (p1 * p2 * p3 * .... * pk) 分析:首先n,m<= 1e18, 要用到Lucas定理求大组合数取模,当然p[]的乘积& ...
- HDU 5446 Unknown Treasure(lucas + 中国剩余定理 + 模拟乘法)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5446 题目大意:求C(n, m) % M, 其中M为不同素数的乘积,即M=p1*p2*...*pk, ...
- FJNU2018低程F jq解救fuls (贪心乱搞)题解
题目描述 一天fuls被邪恶的"咕咕咕"抓走了,jq为了救fuls可谓是赴汤蹈火,费了九牛二虎之力才找到了"咕咕咕"关押fuls的地方. fuls被关在一个机关 ...
- BZOJ-1951 古代猪文 (组合数取模Lucas+中国剩余定理+拓展欧几里得+快速幂)
数论神题了吧算是 1951: [Sdoi2010]古代猪文 Time Limit: 1 Sec Memory Limit: 64 MB Submit: 1573 Solved: 650 [Submit ...
- HDU 5446 Unknown Treasure Lucas+中国剩余定理+按位乘
HDU 5446 Unknown Treasure 题意:求C(n, m) %(p[1] * p[2] ··· p[k]) 0< n,m < 1018 思路:这题基本上算是模版题了 ...
- HDU5446 Unknown Treasure(组合数膜合数-->Lucas+中国剩余定理)
>On the way to the next secret treasure hiding place, the mathematician discovered a cave unknown ...
- BZOJ 1951 [SDOI2010]古代猪文 (组合数学+欧拉降幂+中国剩余定理)
题目大意:求$G^{\sum_{m|n} C_{n}^{m}}\;mod\;999911659\;$的值$(n,g<=10^{9})$ 并没有想到欧拉定理.. 999911659是一个质数,所以 ...
- bzoj 3782 上学路线 卢卡斯定理 容斥 中国剩余定理 dp
LINK:上学路线 从(0,0)走到(n,m)每次只能向上或者向右走 有K个点不能走求方案数,对P取模. \(1\leq N,M\leq 10^10 0\leq T\leq 200\) p=10000 ...
- HDU 5446 中国剩余定理+lucas
Unknown Treasure Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Other ...
随机推荐
- big and little endian
总是容易搞混big endian 和 little endian,但是找到一篇文章,其解释让人耳目一新. 文章链接:http://www.cs.umd.edu/class/sum2003/cmsc31 ...
- webform非表单提交时防xss攻击
1.webform默认配置下,主动防御了针对表单提交的xss攻击,但这次发生时因为url导致的,所以webform的默认防御机制不起作用 webform下输出非表单提交获得的数据的时候,要加htm ...
- Python全栈-day12-day13-函数4
1.迭代器 1)定义:迭代取值的工具 2)优缺点 优点 a.提供一种不依赖索引取值的方法 b.同时一时刻内存在存在的值只有一个,更加省内存 缺点 a.取值麻烦,只能通过next方法一个一个地往后取 b ...
- Java基础语法(三)
七.方法 定义: 方法就是完成特定功能的代码块 在很多语言里面都有函数的定义 函数在Java中被称为方法 格式: 修饰符 返回值类型 方法名(参数类型 参数名1,参数类型 参数名2…) { 函数体; ...
- 20155228 2017-5-10 课堂测试:MySort
20155228 2017-5-10 课堂测试:MySort 题目和要求 模拟实现Linux下Sort-t:-k2的功能.参考Sort的实现.提交码云链接和代码运行截图. import java.ut ...
- Log4J基础详解及示例大全(转)
log4j可以通过使用配置文件的方式进行配置. 配置步骤如下: 1.定义日志组件logger 每个logger都可以拥有一个或者多个appender,每个appender表示一个日志的输出目的地,比如 ...
- hive的find_in_set函数
集合查找函数: find_in_set语法: find_in_set(string str, string strList) 返回值: int说明: 返回str在strlist第一次出现的位置,str ...
- 360浏览器有个 谷歌访问助手(插件管理里搜谷歌即可) 可以免费访问:谷歌搜索,Google+ gmail
360浏览器有个 谷歌访问助手(插件管理里搜谷歌即可) 可以免费访问:谷歌搜索,Google+ gmail
- 51Nod 2020 排序相减
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=2020 思路:排序 水水 #include<iostre ...
- 使用 ffmpeg 转换视频格式
ffmpeg 是 *nix 系统下最流行的音视频处理库,功能强大,并且提供了丰富的终端命令,实是日常视频处理的一大利器! 实例 flac 格式转 mp3 音频格式转换非常简单: ffmpeg -i i ...