Pollard Rho大质数分解学习笔记
问题
给定n,要求对n质因数分解
普通的试除法已经不能应用于大整数了,我们需要更快的算法
流程
大概就是找出\(n=c*d\)
如果\(c\)是素数,结束,不是继续递归处理。
具体一点的话
1.先对n进行\(miller\_rabin\)测试,是素数就直接结束了
如果不会的话,看我前篇博客的介绍吧
为何还要多写个\(miller\_rabin\),他没有非平凡因子,他要保证复杂度?
2.随机基底a和c,生成序列\(x_{0}=a,x_{i}=x_{i-1}^{2}+c(mod n)\),可以认为\({x_{i}}\)是有循环节的随机序列(rho就是密度的那个符号,长得很像是不是)
3.若出现\((x_{i}-x_{2i+1},n)≠1\),停止算法,令\(d=(x_{i}-x_{2i+1},n)\),若\(d≠n\),那d就是n的非平凡因子,n被分为d和n/d相乘的结果,递归下去继续分解
4.若d=n,重选基底a和c,重复过程(出现循环了)
刘汝佳先生说:想象一下,假设有两个小孩子在一个“可以无限向前跑”的跑道上赛跑,同时出发。但其中一个小孩的速度是另一个的两倍。如果跑道是直的,跑得快的小孩永远在前面;但如果跑道有环,则跑得快的小孩将“追上”跑得慢的小孩。
算法复杂度\(O(n^{ \frac {1}{4} }*pro)\)
具体的我也不知道咋证
代码
#include <bits/stdc++.h>
using namespace std;
const int maxn = 10005;
typedef long long LL;
LL fpm(LL a, LL k, LL p) //calc a^k % p
{
LL res = 1;
for (; k ; k >>= 1, a = a * a % p)
if (k & 1) res = a * res % p;
return res;
}
int prime[] = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29};
bool detective(LL a, LL n)
{
int r = 0; LL d = n - 1; // n - 1 = 2 ^ r * d
while (d % 2 == 0) d >>= 1, ++r;
for (LL x = fpm(a, d, n), y; r ; r--)
{
y = x * x % n;
if (y == 1)
{
if (x == 1) return true;
if (x == n - 1) return true;
return false;
}
x = y;
}
return false;
}
bool miller_rabin(LL n)
{
for (int i = 0; i < 10; i++)
{
if (n == prime[i]) return true;
if (n % prime[i] == 0) return false;
if (!detective(prime[i], n)) return false;
}
return true;
}
vector<LL> res;
int irand() {return rand() << 15 ^ rand();}
LL irand(LL n) {return (((LL) irand()) << 30 ^ irand()) % n;}
LL mul(LL a, LL b, LL n) {return (a * b - (LL) ((long double) a * b / n + 1e-9) * n) % n;}
LL rho(LL n)
{
LL a = irand(n), c = irand(n);
LL x = a, y = (mul(a, a, n) + c) % n;
LL z = x > y ? x - y: y - x;
LL d = __gcd(z, n);
while (d == 1)
{
x = (mul(x, x, n) + c) % n;
y = (mul(y, y, n) + c) % n;
y = (mul(y, y, n) + c) % n;
z = x > y ? x - y: y - x;
d = __gcd(z, n);
}
return d;
}
void pollard_rho(LL n)
{
if (n == 1) return ;
if (miller_rabin(n)) {res.push_back(n); return ;}
LL d = n; while (d == n) d = rho(n);
pollard_rho(d); pollard_rho(n / d);
}
int main()
{
pollard_rho(997 * 131ll * 6ll * 50ll * 79ll * 97 * 12132);
for (auto x: res) cerr << x << " " ;
}
生日悖论
(当然,我们这里的一年是稳定365天,和我们不一样)
23个人中至少有一对两个人生日相同的概率在一半以上,感觉不可思议吧,与我们自我感觉的有很大差异,其实,当我们看到“有人生日相同”时,下意识地会用“与我生日相同”去推测,直觉就让我们直觉产生了“两人生日相同”概率很小。理性计算的结果与日常经验产生了如此明显的矛盾,所以叫做“生日悖论”。
可以说,直觉没有错,错的是我们没有正确地去理解问题。因此,当我们剥开直觉的谎言,看清事实的那一刻,才会觉得如此不可思议。
我们的问题是“任意两个人的生日相同的概率”(所以要理性分析呀qwq)。
我们讨论两个人生日相同的情况。
总概率是365*365,生日不同的情况\(365*364\)
那生日相同的情况就是 \(\frac{365*365-365*364}{365*365}=\frac{1}{365}\)
四个人同理\(\frac{365^4-\frac{365!}{361!}}{365^4}\)
再大一点可以用long double 计算,可以算出23人时概率就大于一半了
end
鸣谢
Pollard Rho大质数分解学习笔记的更多相关文章
- Miller-Rabin 素性测试 与 Pollard Rho 大整数分解
\(\\\) Miller-Rabin 素性测试 考虑如何检验一个数字是否为素数. 经典的试除法复杂度 \(O(\sqrt N)\) 适用于询问 \(N\le 10^{16}\) 的时候. 如果我们要 ...
- POJ 1811 Prime Test (Pollard rho 大整数分解)
题意:给出一个N,若N为素数,输出Prime.若为合数,输出最小的素因子.思路:Pollard rho大整数分解,模板题 #include <iostream> #include < ...
- 整数(质因子)分解(Pollard rho大整数分解)
整数分解,又称质因子分解.在数学中,整数分解问题是指:给出一个正整数,将其写成几个素数的乘积的形式. (每个合数都可以写成几个质数相乘的形式,这几个质数就都叫做这个合数的质因数.) .试除法(适用于范 ...
- HDU 3864 D_num Miller Rabin 质数推断+Pollard Rho大整数分解
链接:http://acm.hdu.edu.cn/showproblem.php? pid=3864 题意:给出一个数N(1<=N<10^18).假设N仅仅有四个约数.就输出除1外的三个约 ...
- 大数据 -- kafka学习笔记:知识点整理(部分转载)
一 为什么需要消息系统 1.解耦 允许你独立的扩展或修改两边的处理过程,只要确保它们遵守同样的接口约束. 2.冗余 消息队列把数据进行持久化直到它们已经被完全处理,通过这一方式规避了数据丢失风险.许多 ...
- angular这个大梗的学习笔记
angular定义一个模块(module)及控制器(controller)的局部声明方法: var app=angular.module("Myapp",[]); myapp.co ...
- Hadoop学习笔记一
云帆大数据视频学习笔记,记录如下. 一.主机名设置的规范 /etc/hosts文件中添加如下的记录: 192.168.1.128 hadoop-yarn.cloudyhadoop.com had-ya ...
- 不错的Spring学习笔记(转)
Spring学习笔记(1)----简单的实例 --------------------------------- 首先需要准备Spring包,可从官方网站上下载. 下载解压后,必须的两个包是s ...
- [学习笔记]Pollard-Rho
之前学的都是假的 %%zzt Miller_Rabin:Miller-Rabin与二次探测 大质数分解: 找到所有质因子,再logn搞出质因子的次数 方法:不断找到一个约数d,递归d,n/d进行分解, ...
随机推荐
- 图片和base64互转
最近项目需要将图片以base64编码,这里记录下相关的一些东西. 需要导入两个类:sun.misc.BASE64Encoder sun.misc.BASE64Decoder 下面是相关java代码: ...
- 导入转储文件的时候:Error Code: 1406. Data too long for column - MySQL
MySQL will truncate any insert value that exceeds the specified column width. to make this without e ...
- oracle中ddl的管理
因为某些原因,Oracle的ddl权限不能开放给用户. 之前采取的方式是,创建用户的时候不为其赋予create table 的权限. 但是在使用过程中发现该用户还是拥有alter table的权限. ...
- linux脚本文件执行的方法之间的区别
sh/bash sh a.sh bash a.sh 都是打开一个subshell去读取.执行a.sh,而a.sh不需要有"执行权限",在subshell里运行的脚本里设置变量,不会 ...
- 【转】通过Excel生成批量SQL语句,处理大量数据
经常会遇到这样的要求:用户给发过来一些数据,要我们直接给存放到数据库里面,有的是Insert,有的是Update等等,少量的数据我们可以采取最原始的办法,也就是在SQL里面用Insert into来实 ...
- hive 用户行为分析(活跃。启动,留存,回访,新增)的一些经典sql
很简单的sql 用户分析语句 :只要自定义简单的udf函数 获取统计时间createdatms字段的使用的日历类 add方法 和simpledateformat 将long类型的 定义多个重载方法 获 ...
- redis 五大数据类型以及操作
一.redis的两种链接方式 1.简单连接 import redis conn = redis.Redis(host='10.0.0.200',port=6379) conn.set('k1','年后 ...
- js中使用0 “” null undefined {}需要注意
注意:在js中0为空(false) ,代表空的还有“”,null ,undefined: 如果做判断if(!上面的四种值):返回均为false console.log(!null);// true c ...
- 76 道 Oracle Goldengate 面试问题
基础 12c新特性 性能 Troubleshoot 其它 1. Oracle Goldengate 支持部署到哪些拓扑? GoldenGate supports the following topol ...
- ogg 12.3 中 format release的变化
Non-CDB databases with compatibility set to 12.1, FORMAT RELEASE 12.2 or above is supported. Non-CDB ...