Python中下划线---完全解读

 
 

Python 用下划线作为变量前缀和后缀指定特殊变量

_xxx 不能用’from module import *’导入

__xxx__ 系统定义名字

__xxx 类中的私有变量名

核心风格:避免用下划线作为变量名的开始。

因为下划线对解释器有特殊的意义,而且是内建标识符所使用的符号,我们建议程序员避免用下划线作为变量名的开始。一般来讲,变量名_xxx被看作是“私有 的”,在模块或类外不可以使用。当变量是私有的时候,用_xxx 来表示变量是很好的习惯。因为变量名__xxx__对Python 来说有特殊含义,对于普通的变量应当避免这种命名风格。

“单下划线” 开始的成员变量叫做保护变量,意思是只有类对象和子类对象自己能访问到这些变量;
“双下划线” 开始的是私有成员,意思是只有类对象自己能访问,连子类对象也不能访问到这个数据。

以单下划线开头(_foo)的代表不能直接访问的类属性,需通过类提供的接口进行访问,不能用“from xxx import *”而导入;以双下划线开头的(__foo)代表类的私有成员;以双下划线开头和结尾的(__foo__)代表python里特殊方法专用的标识,如 __init__()代表类的构造函数。

现在我们来总结下所有的系统定义属性和方法, 先来看下保留属性:

  1. >>> Class1.__doc__ # 类型帮助信息 'Class1 Doc.' >>> Class1.__name__ # 类型名称 'Class1' >>> Class1.__module__ # 类型所在模块 '__main__' >>> Class1.__bases__ # 类型所继承的基类 (<type 'object'>,) >>> Class1.__dict__ # 类型字典,存储所有类型成员信息。 <dictproxy object at 0x00D3AD70> >>> Class1().__class__ # 类型 <class '__main__.Class1'> >>> Class1().__module__ # 实例类型所在模块 '__main__' >>> Class1().__dict__ # 对象字典,存储所有实例成员信息。 {'i': 1234}
  1. 接下来是保留方法,可以把保留方法分类:

类的基础方法

序号 目的 所编写代码 Python 实际调用
初始化一个实例 x = MyClass() x.__init__()
字符串的“官方”表现形式 repr(x) x.__repr__()
字符串的“非正式”值 str(x) x.__str__()
字节数组的“非正式”值 bytes(x) x.__bytes__()
格式化字符串的值 format(x, format_spec) x.__format__(format_spec)
  1. 对 __init__() 方法的调用发生在实例被创建 之后 。如果要控制实际创建进程,请使用 __new__() 方法
  2. 按照约定, __repr__() 方法所返回的字符串为合法的 Python 表达式。
  3. 在调用 print(x) 的同时也调用了 __str__() 方法。
  4. 由于 bytes 类型的引入而从 Python 3 开始出现

行为方式与迭代器类似的类

序号 目的 所编写代码 Python 实际调用
遍历某个序列 iter(seq) seq.__iter__()
从迭代器中获取下一个值 next(seq) seq.__next__()
按逆序创建一个迭代器 reversed(seq) seq.__reversed__()
  1. 无论何时创建迭代器都将调用 __iter__() 方法。这是用初始值对迭代器进行初始化的绝佳之处。
  2. 无论何时从迭代器中获取下一个值都将调用 __next__() 方法。
  3. __reversed__() 方法并不常用。它以一个现有序列为参数,并将该序列中所有元素从尾到头以逆序排列生成一个新的迭代器。

计算属性

序号 目的 所编写代码 Python 实际调用
获取一个计算属性(无条件的) x.my_property x.__getattribute__('my_property')
获取一个计算属性(后备) x.my_property x.__getattr__('my_property')
设置某属性 x.my_property = value x.__setattr__('my_property',value)
删除某属性 del x.my_property x.__delattr__('my_property')
列出所有属性和方法 dir(x) x.__dir__()
  1. 如果某个类定义了 __getattribute__() 方法,在 每次引用属性或方法名称时 Python 都调用它(特殊方法名称除外,因为那样将会导致讨厌的无限循环)。
  2. 如果某个类定义了 __getattr__() 方法,Python 将只在正常的位置查询属性时才会调用它。如果实例 x 定义了属性color, x.color 将 不会 调用x.__getattr__('color');而只会返回x.color 已定义好的值。
  3. 无论何时给属性赋值,都会调用 __setattr__() 方法。
  4. 无论何时删除一个属性,都将调用 __delattr__() 方法。
  5. 如果定义了 __getattr__() 或 __getattribute__() 方法, __dir__() 方法将非常有用。通常,调用 dir(x) 将只显示正常的属性和方法。如果__getattr()__方法动态处理color 属性, dir(x) 将不会将 color 列为可用属性。可通过覆盖 __dir__() 方法允许将 color 列为可用属性,对于想使用你的类但却不想深入其内部的人来说,该方法非常有益。
序号 目的 所编写代码 Python 实际调用
  序列的长度 len(seq) seq.__len__()
  了解某序列是否包含特定的值 x in seq seq.__contains__(x)
序号 目的 所编写代码 Python 实际调用
  通过键来获取值 x[key] x.__getitem__(key)
  通过键来设置值 x[key] = value x.__setitem__(key,value)
  删除一个键值对 del x[key] x.__delitem__(key)
  为缺失键提供默认值 x[nonexistent_key] x.__missing__(nonexistent_key)

可比较的类

我将此内容从前一节中拿出来使其单独成节,是因为“比较”操作并不局限于数字。许多数据类型都可以进行比较——字符串、列表,甚至字典。如果要创建自己的类,且对象之间的比较有意义,可以使用下面的特殊方法来实现比较。

序号 目的 所编写代码 Python 实际调用
  相等 x == y x.__eq__(y)
  不相等 x != y x.__ne__(y)
  小于 x < y x.__lt__(y)
  小于或等于 x <= y x.__le__(y)
  大于 x > y x.__gt__(y)
  大于或等于 x >= y x.__ge__(y)
  布尔上上下文环境中的真值 if x: x.__bool__()

可序列化的类

Python 支持 任意对象的序列化和反序列化。(多数 Python 参考资料称该过程为 “pickling” 和 “unpickling”)。该技术对与将状态保存为文件并在稍后恢复它非常有意义。所有的 内置数据类型 均已支持 pickling 。如果创建了自定义类,且希望它能够 pickle,阅读 pickle 协议 了解下列特殊方法何时以及如何被调用。

序号 目的 所编写代码 Python 实际调用
  自定义对象的复制 copy.copy(x) x.__copy__()
  自定义对象的深度复制 copy.deepcopy(x) x.__deepcopy__()
  在 pickling 之前获取对象的状态 pickle.dump(x, file) x.__getstate__()
  序列化某对象 pickle.dump(x, file) x.__reduce__()
  序列化某对象(新 pickling 协议) pickle.dump(x, fileprotocol_version) x.__reduce_ex__(protocol_version)
* 控制 unpickling 过程中对象的创建方式 x = pickle.load(file) x.__getnewargs__()
* 在 unpickling 之后还原对象的状态 x = pickle.load(file) x.__setstate__()

* 要重建序列化对象,Python 需要创建一个和被序列化的对象看起来一样的新对象,然后设置新对象的所有属性。__getnewargs__() 方法控制新对象的创建过程,而 __setstate__() 方法控制属性值的还原方式。

可在 with 语块中使用的类

with 语块定义了 运行时刻上下文环境;在执行 with 语句时将“进入”该上下文环境,而执行该语块中的最后一条语句将“退出”该上下文环境。

序号 目的 所编写代码 Python 实际调用
  在进入 with 语块时进行一些特别操作 with x: x.__enter__()
  在退出 with 语块时进行一些特别操作 with x: x.__exit__()

以下是 with file 习惯用法 的运作方式:

  1. # excerpt from io.py: def _checkClosed(self, msg=None): '''Internal: raise an ValueError if file is closed ''' if self.closed: raise ValueError('I/O operation on closed file.' if msg is None else msg) def __enter__(self): '''Context management protocol. Returns self.''' self._checkClosed() ① return self ② def __exit__(self, *args): '''Context management protocol. Calls close()''' self.close() ③
  1. 该文件对象同时定义了一个 __enter__() 和一个 __exit__() 方法。该 __enter__() 方法检查文件是否处于打开状态;如果没有, _checkClosed()方法引发一个例外。
  2. __enter__() 方法将始终返回 self —— 这是 with 语块将用于调用属性和方法的对象
  3. 在 with 语块结束后,文件对象将自动关闭。怎么做到的?在 __exit__() 方法中调用了 self.close() .

?该 __exit__() 方法将总是被调用,哪怕是在 with 语块中引发了例外。实际上,如果引发了例外,该例外信息将会被传递给 __exit__() 方法。查阅 With 状态上下文环境管理器 了解更多细节。

真正神奇的东西

如果知道自己在干什么,你几乎可以完全控制类是如何比较的、属性如何定义,以及类的子类是何种类型。

序号 目的 所编写代码 Python 实际调用
  类构造器 x = MyClass() x.__new__()
* 类析构器 del x x.__del__()
  只定义特定集合的某些属性   x.__slots__()
  自定义散列值 hash(x) x.__hash__()
  获取某个属性的值 x.color type(x).__dict__['color'].__get__(x, type(x))
  设置某个属性的值 x.color = 'PapayaWhip' type(x).__dict__['color'].__set__(x, 'PapayaWhip')
  删除某个属性 del x.color type(x).__dict__['color'].__del__(x)
  控制某个对象是否是该对象的实例 your class isinstance(x, MyClass) MyClass.__instancecheck__(x)
  控制某个类是否是该类的子类 issubclass(C, MyClass) MyClass.__subclasscheck__(C)
  控制某个类是否是该抽象基类的子类 issubclass(C, MyABC) MyABC.__subclasshook__(C)

python中以双下划线的是一些系统定义得名称,让python以更优雅得语法实行一些操作,本质上还是一些函数和变量,与其他函数和变量无二。
比如x.__add__(y) 等价于 x+y
有一些很常见,有一些可能比较偏,在这里罗列一下,做个笔记,备忘。
x.__contains__(y) 等价于 y in x, 在list,str, dict,set等容器中有这个函数
__base__, __bases__, __mro__, 关于类继承和函数查找路径的。
class.__subclasses__(), 返回子类列表
x.__call__(...) == x(...)
x.__cmp__(y) == cmp(x,y)
x.__getattribute__('name') == x.name == getattr(x, 'name'),  比__getattr__更早调用
x.__hash__() == hash(x)
x.__sizeof__(), x在内存中的字节数, x为class得话, 就应该是x.__basicsize__
x.__delattr__('name') == del x.name
__dictoffset__ attribute tells you the offset to where you find the pointer to the __dict__ object in any instance object that has one. It is in bytes.
__flags__, 返回一串数字,用来判断该类型能否被序列化(if it's a heap type), __flags__ & 512
S.__format__, 有些类有用
x.__getitem__(y) == x[y], 相应还有__setitem__, 某些不可修改类型如set,str没有__setitem__
x.__getslice__(i, j) == x[i:j], 有个疑问,x='123456789', x[::2],是咋实现得
__subclasscheck__(), check if a class is subclass
__instancecheck__(), check if an object is an instance
__itemsize__, These fields allow calculating the size in bytes of instances of the type. 0是可变长度, 非0则是固定长度
x.__mod__(y) == x%y, x.__rmod__(y) == y%x
x.__module__ , x所属模块
x.__mul__(y) == x*y,  x.__rmul__(y) == y*x

__reduce__, __reduce_ex__ , for pickle

__slots__ 使用之后类变成静态一样,没有了__dict__, 实例也不可新添加属性

__getattr__ 在一般的查找属性查找不到之后会调用此函数

__setattr__ 取代一般的赋值操作,如果有此函数会调用此函数, 如想调用正常赋值途径用 object.__setattr__(self, name, value)

__delattr__ 同__setattr__, 在del obj.name有意义时会调用

python中那些双下划线开头得函数和变量的更多相关文章

  1. python中那些双下划线开头得函数和变量--转载

    Python中下划线---完全解读     Python 用下划线作为变量前缀和后缀指定特殊变量 _xxx 不能用'from module import *'导入 __xxx__ 系统定义名字 __x ...

  2. python python中那些双下划线开头的那些函数都是干啥用用的

    1.写在前面 今天遇到了__slots__,,所以我就想了解下python中那些双下划线开头的那些函数都是干啥用用的,翻到了下面这篇博客,看着很全面,我只了解其中的一部分,还不敢乱下定义. 其实如果足 ...

  3. Python中被双下划线包围的魔法方法

    基本的魔法方法 __new__(cls[, ...]) 用来创建对象 1. __new__ 是在一个对象实例化的时候所调用的第一个方法 2. 它的第一个参数是这个类,其他的参数是用来直接传递给 __i ...

  4. python中的单下划线和双下划线意义和作用

    Python中并没有真正意义上的“私有”,类的属性的的可见性取决于属性的名字(这里的属性包括了函数).例如,以单下划线开头的属性(例如_spam),应被当成API中非公有的部分(但是注意,它们仍然可以 ...

  5. Python模块是否支持自定义属性使用双下划线开头和结尾?

    我们知道在Python中,变量名类似__xxx__的,也就是以双下划线开头并且以双下划线结尾的变量和方法,是特殊变量,特殊变量是可以直接访问的,不是私有变量,所以,一般实例变量和类变量以及方法不能用_ ...

  6. 【编程开发】Python隐藏属性——使用双下划线标识私有属性,外部不可直接访问

           from:https://zhuanlan.zhihu.com/p/30553607 小编在最初使用上Python之后,就一发不可收拾,人生苦短.我用Python,不光是因为其优雅简洁, ...

  7. Python 中奇妙的下划线

    单个下划线(_) 通常有三种用法: 在python解释器: 单个下划线代表上次在交互解释期对话中(控制台)执行的结果.这种情况在标准的CPython解释器中首次被实现,接下来这种习惯也被保持下来: & ...

  8. php 以单下划线或双下划线开头的命名

    有2个下划线的是魔术方法,如:__construct.__destruct等等.有1个下划线的一般是私有方法,如 _initialize. 小测试: public function _test(){ ...

  9. python类中的双下划线方法

    __getitem__,__setitem__和__delitem__ 实现了对象属性的字典化操作. class Person: def __init__(self, name, age, hobby ...

随机推荐

  1. Java 代码性能调优“三十六”策

    代码优化,一个很重要的课题.可能有些人觉得没用,一些细小的地方有什么好修改的,改与不改对于代码的运行效率有什么影响呢?这个问题我是这么考虑的,就像大海里面的鲸鱼一样,它吃一条小虾米有用吗?没用,但是, ...

  2. 一文看懂显示关键材料之彩色滤光片(Color Filter)

    http://www.sohu.com/a/219398623_119960 液晶显示器的背光源发出的白光,而想要获得彩色显示,必须依靠显示关键材料-彩色滤光片. 图片来源:网络公开资料 什么是彩色滤 ...

  3. JAVA连接数据库 #03# HikariCP

    索引 为什么用数据库连接池? HikariCP快速入门 依赖 简单的草稿程序 设置连接池参数(只列举常用的) MySQL配置 修改Java连接数据库#02#中的代码 测试 为什么用数据库连接池? 为什 ...

  4. linux的/etc/passwd、/etc/shadow、/etc/group和/etc/gshadow—关于用户和组的配置文件

    1./etc/passwd  存储用户信息 [root@oldboy ~]# head /etc/passwd root:x:0:0:root:/root:/bin/bash bin:x:1:1:bi ...

  5. VMware Workstation Pro14安装

    1. 下载VMware Workstation Pro14,注意,这个链接支持win7 64及以上系统 2.  点击进入安装 3. 接受许可协议 4. 选择安装目录,是否选择增强型键盘驱动程序 5. ...

  6. SVN更新无数次后仍显示Out of date

    理器相集成的TortoiseSVN更是方便. 但有时候在提交修改后的文件时,却莫名其妙的出现out of date错误,导致工程无法commit,即使将新文件删了重新update,然后再在旧文件上作修 ...

  7. 【题解】Luogu P1533 可怜的狗狗

    原题传送门 莫队介绍,Splay介绍 离线的题目,莫队是不错的解决方法 先把询问排一下序 剩下就套一个莫队的板子 每来一只狗就把漂亮值插入平衡树 每去掉一只狗就把漂亮值从平衡树中删掉 每次查询查平衡树 ...

  8. Python3基础 frozenset 使用list创建frozenset

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  9. 2199: [Usaco2011 Jan]奶牛议会 2-sat

    链接 https://www.luogu.org/problemnew/show/P3007 https://www.lydsy.com/JudgeOnline/problem.php?id=2199 ...

  10. vs2015 + Python3.5 环境搭建

    1. vs2015只支持Python3.5及以前的版本,对应Anaconda3.4.2之前的版本. 2. 卸载掉所有安装过的Python 3. 建议重装VS2015, 因为增量升级Python Too ...