Boosting
Boosting is a greedy alogrithm. The alogrithm works by applying the weak learner sequentially to weighted version of the data, where more weight is given to examples that were misclassified by earlier rounds. Breiman( 1998) showed that boosting can be interperted as a form of gradient descent in function space. This view was then extended in (Friedman et al. 2000), who showed how boosting could be extended to handle a variety of loss functions , including for regression, robust regression, Poission regression, etc.
1. Forward stagewise additive modeling:
The goal of boosting is to solve the following optimization problem:
\(\min_{f} \sum_{i=1}^N L(y_i, f(x_i))\)
and \(L(y,\hat{y})\) is some loss function, and f is assumed to be an (adaptive basis function model) ABM.
the picture above portries some possible loss function and their corresponding algrithm names.
2. The procedures of forward stagewise algorithm:
Input: training data: \( T = \{(x_1,y_1),(x_2,y_2),...,(x_N,y_N)\}\); Loss function \(L(y,f(x))\); basis function set: \(b\{x;r\}\).
Output: addative model: f(x):
(1) Initialize \(f_0(x)\).
(2) for m in 1,2,...,M:
(a): minimize loss function:
\((\beta_m,r_m) = argmin_{\beta,r} \sum_{i = 1}^{N}L(y_i,f_{m-1}(x_i) + \beta b(x_i;r))\);
then we got the parameters: \(\beta_m,r_m\).
(b): Update:
\(f_m(x) = f_{m-1} (x) = \beta_m b_(x;r_m)\)
(3) additive model:
\(f(x) = f_M(x) = \sum_{m =1}^N \beta_m b(x;r_m)\)
Reference:
1. Machine learning a probabilistic perspective 553-563.
2. The elements of statistical learning
3. http://blog.csdn.net/dark_scope/article/details/24863289
Boosting的更多相关文章
- boosting、adaboost
1.boosting Boosting方法是一种用来提高弱分类算法准确度的方法,这种方法通过构造一个预测函数系列,然后以一定的方式将他们组合成一个预测函数.他是一种框架算法,主要是通过对样本集的操作获 ...
- [Mechine Learning & Algorithm] 集成学习方法——Bagging和 Boosting
使用机器学习方法解决问题时,有较多模型可供选择. 一般的思路是先根据数据的特点,快速尝试某种模型,选定某种模型后, 再进行模型参数的选择(当然时间允许的话,可以对模型和参数进行双向选择) 因为不同的模 ...
- 转载:bootstrap, boosting, bagging 几种方法的联系
转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...
- PRML读书会第十四章 Combining Models(committees,Boosting,AdaBoost,决策树,条件混合模型)
主讲人 网神 (新浪微博: @豆角茄子麻酱凉面) 网神(66707180) 18:57:18 大家好,今天我们讲一下第14章combining models,这一章是联合模型,通过将多个模型以某种形式 ...
- 【译】用boosting构建简单的目标分类器
用boosting构建简单的目标分类器 原文 boosting提供了一个简单的框架,用来构建鲁棒性的目标检测算法.这里提供了必要的函数来实现它:100% MATLAB实现,作为教学工具希望让它简单易得 ...
- Gradient Boosting Decision Tree学习
Gradient Boosting Decision Tree,即梯度提升树,简称GBDT,也叫GBRT(Gradient Boosting Regression Tree),也称为Multiple ...
- 统计学习方法笔记 -- Boosting方法
AdaBoost算法 基本思想是,对于一个复杂的问题,单独用一个分类算法判断比较困难,那么我们就用一组分类器来进行综合判断,得到结果,"三个臭皮匠顶一个诸葛亮" 专业的说法, 强可 ...
- paper 85:机器统计学习方法——CART, Bagging, Random Forest, Boosting
本文从统计学角度讲解了CART(Classification And Regression Tree), Bagging(bootstrap aggregation), Random Forest B ...
- bootstrap, boosting, bagging 几种方法的联系
http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...
- A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning
A Gentle Introduction to the Gradient Boosting Algorithm for Machine Learning by Jason Brownlee on S ...
随机推荐
- Javascript 垃圾回收机制
转载于https://www.cnblogs.com/zhwl/p/4664604.html 一.垃圾回收的必要性 由于字符串.对象和数组没有固定大小,所有当他们的大小已知时,才能对他们进行动态的存储 ...
- Java问题解决:Java compiler level does not match the version of the installed Java project facet.
问题原因:Java编译器级别与Facted Project 中的Java 版本设定不匹配. 解决办法:将两者设置一致 1.查看Java compiler level : 选中项目右键propertie ...
- 【UOJ】【BZOJ】 [Zjoi2016]小星星
题目链接: http://uoj.ac/problem/185 http://www.lydsy.com/JudgeOnline/problem.php?id=4455 考虑枚举原图中我选择哪一些点, ...
- SqlServer中常常搞不清楚 sp_columns来看一看
The sp_columns catalog stored procedure is equivalent to SQLColumns in ODBC. The results returned ar ...
- 学习笔记7—python 列表,数组,矩阵两两转换tolist()
from numpy import * a1 =[[1,2,3],[4,5,6]] #列表 print('a1 :',a1) #('a1 :', [[1, 2, 3], [4, 5, 6]]) ...
- Dreamweaver 2
1.CSS样式基本应用 1.1 概念 层叠样式表 <style type="text/css">body {background-color: #F00;} p{col ...
- 常用命令-python篇
1. pip 加速命令 pip install --index-url https://pypi.douban.com/simple pip install -i https://pypi.tuna. ...
- Redis的安装及命令返回值
Linux下安装Reids : http://redis.io/download 下载最新稳定版本 wget http://download.redis.io/releases/redis-3.0.7 ...
- 高并发之限流RateLimiter(二)
Guava RateLimiter提供了令牌桶算法实现:平滑突发限流(SmoothBursty)和平滑预热限流(SmoothWarmingUp)实现. SmoothBursty:令牌生成速度恒定 @T ...
- 雷林鹏分享:jQuery EasyUI 树形菜单 - 树形网格惰性加载节点
jQuery EasyUI 树形菜单 - 树形网格惰性加载节点 有时我们已经得到充分的分层树形网格(TreeGrid)的数据. 我们还想让树形网格(TreeGrid)按层次惰性加载节点. 首先,只加载 ...