个人的一些碎碎念:

聚类,直觉就能想到kmeans聚类,另外还有一个hierarchical clustering,但是单细胞里面都用得不多,为什么?印象中只有一个scoring model是用kmean进行粗聚类。(10x就是先做PCA,再用kmeans聚类的)

鉴于单细胞的教程很多,也有不下于10种针对单细胞的聚类方法了。

降维往往是和聚类在一起的,所以似乎有点难以区分。

PCA到底是降维、聚类还是可视化的方法,t-SNE呢?

其实稍微思考一下,PCA、t-SNE还有下面的diffusionMap,都是一种降维方法。区别就在于PCA是完全的线性变换得到PC,t-SNE和diffusionMap都是非线性的。

为什么降维?因为我们特征太多了,基因都是万级的,降维之后才能用kmeans啥的。其次就是,降维了才能可视化!我们可视化的最高维度就是三维,几万维是无法可视化的。但paper里,我们最多选前两维,三维在平面上的效果还不如二维。

聚类策略:

聚类还要什么策略?不就是选好特征之后,再选一个k就得到聚类的结果了吗?是的,常规分析确实没有什么高深的东西。

但通常我们不是为了聚类而聚类,我们的结果是为生物学问题而服务的,如果从任何角度都无法解释你的聚类结果,那你还聚什么类,总不可能在paper里就写我们聚类了,得到了一些marker,然后就没了下文把!

什么问题?

什么叫针对问题的聚类呢?下面这篇文章就是针对具体问题的聚类。先知:我们知道我们细胞里有些污染的细胞,如何通过聚类将他们识别出来?

这种具体的问题就没法通过跑常规流程来解决了,得想办法!

Dimensionality reduction.

Throughout the manuscript we use diffusion maps, a non-linear dimensionality reduction technique37. We calculate a cell-to-cell distance matrix using 1 - Pearson correlation and use the diffuse function of the diffusionMap R package with default parameters to obtain the first 50 DMCs. To determine the significant DMCs, we look at the reduction of eigenvalues associated with DMCs. We determine all dimensions with an eigenvalue of at least 4% relative to the sum of the first 50 eigenvalues as significant, and scale all dimensions to have mean 0 and standard deviation of 1.

有点超前(另类),用diffusionMap来降维,计算了细胞-细胞的距离,得到50个DMC,鉴定出显著的DMC,scale一下。

Initial clustering of all cells.

To identify contaminating cell populations and assess  overall heterogeneity in the data, we clustered all single cells. We first combined all Drop-seq samples and normalized the data (21,566 cells, 10,791 protein-coding genes detected in at least 3 cells and mean UMI at least 0.005) using regularized negative binomial regression as outlined above (correcting for sequencing depth related factors and cell cycle). We identified 731 highly variable genes; that is, genes for which the z-scored standard deviation was at least 1. We used the variable genes to perform dimensionality reduction using diffusion maps as outlined above (with relative eigenvalue cutoff of 2%), which returned 10 significant dimensions.

For clustering we used a modularity optimization algorithm that finds community structure in the data with Jaccard similarities (neighbourhood size 9, Euclidean distance in diffusion map coordinates) as edge weights between cells38. With the goal of over-clustering the data to identify rare populations, the small neighbourhood size resulted in 15 clusters, of which two were clearly separated from the rest and expressed marker genes expected from contaminating cells (Neurod6 from excitatory neurons, Igfbp7 from epithelial cells). These cells represent rare cellular contaminants in the original sample (2.6% and 1%), and were excluded from further analysis, leaving 20,788 cells.

鉴定出了highly variable genes,还是为了降噪(其实特征选择可以很自由,只是好杂志偏爱这种策略,你要是纯手动选,人家就不乐意了)。

Jaccard相似度,来聚类。

要想鉴定rare populations,就必须over-clustering!!!居然将k设置为15,然后通过marker来筛选出contaminating cells。

确实从中学习了很多,自己手写代码就是不一样,比纯粹的跑软件要强很多。

# cluster cells and remove contaminating populations
cat('Doing initial clustering\n')
cl <- cluster.the.data.simple(cm, expr, 9, seed=42)
md$init.cluster <- cl$clustering
# detection rate per cluster for some marker genes
goi <- c('Igfbp7', 'Col4a1', 'Neurod2', 'Neurod6')
det.rates <- apply(cm[goi, ] > 0, 1, function(x) aggregate(x, by=list(cl$clustering), FUN=mean)$x)
contam.clusters <- sort(unique(cl$clustering))[apply(det.rates > 1/3, 1, any)]
use.cells <- !(cl$clustering %in% contam.clusters)
cat('Of the', ncol(cm), 'cells', sum(!use.cells), 'are determined to be part of a contaminating cell population.\n')
cm <- cm[, use.cells]
expr <- expr[, use.cells]
md <- md[use.cells, ]

  

# for clustering
# ev.red.th: relative eigenvalue cutoff of 2%
dim.red <- function(expr, max.dim, ev.red.th, plot.title=NA, do.scale.result=FALSE) {
cat('Dimensionality reduction via diffusion maps using', nrow(expr), 'genes and', ncol(expr), 'cells\n')
if (sum(is.na(expr)) > 0) {
dmat <- 1 - cor(expr, use = 'pairwise.complete.obs')
} else {
# distance 0 <=> correlation 1
dmat <- 1 - cor(expr)
} max.dim <- min(max.dim, nrow(dmat)/2)
dmap <- diffuse(dmat, neigen=max.dim, maxdim=max.dim)
ev <- dmap$eigenvals
# relative eigenvalue cutoff of 2%, something like PCA
ev.red <- ev/sum(ev)
evdim <- rev(which(ev.red > ev.red.th))[1] if (is.character(plot.title)) {
# Eigenvalues, We observe a substantial eigenvalue drop-off after the initial components, demonstrating that the majority of the variance is captured in the first few dimensions.
plot(ev, ylim=c(0, max(ev)), main = plot.title)
abline(v=evdim + 0.5, col='blue')
} evdim <- max(2, evdim, na.rm=TRUE)
cat('Using', evdim, 'significant DM coordinates\n') colnames(dmap$X) <- paste0('DMC', 1:ncol(dmap$X))
res <- dmap$X[, 1:evdim]
if (do.scale.result) {
res <- scale(dmap$X[, 1:evdim])
}
return(res)
} # jaccard similarity
# rows in 'mat' are cells
jacc.sim <- function(mat, k) {
# generate a sparse nearest neighbor matrix
nn.indices <- get.knn(mat, k)$nn.index
j <- as.numeric(t(nn.indices))
i <- ((1:length(j))-1) %/% k + 1
nn.mat <- sparseMatrix(i=i, j=j, x=1)
rm(nn.indices, i, j)
# turn nn matrix into SNN matrix and then into Jaccard similarity
snn <- nn.mat %*% t(nn.mat)
snn.summary <- summary(snn)
snn <- sparseMatrix(i=snn.summary$i, j=snn.summary$j, x=snn.summary$x/(2*k-snn.summary$x))
rm(snn.summary)
return(snn)
} cluster.the.data.simple <- function(cm, expr, k, sel.g=NA, min.mean=0.001,
min.cells=3, z.th=1, ev.red.th=0.02, seed=NULL,
max.dim=50) {
if (all(is.na(sel.g))) {
# no genes specified, use most variable genes
# filter min.cells and min.mean
# cm only for filtering
goi <- rownames(expr)[apply(cm[rownames(expr), ]>0, 1, sum) >= min.cells & apply(cm[rownames(expr), ], 1, mean) >= min.mean]
# gene sum
sspr <- apply(expr[goi, ]^2, 1, sum)
# scale the expression of all genes, only select the gene above z.th
# need to plot the hist
sel.g <- goi[scale(sqrt(sspr)) > z.th]
}
cat(sprintf('Selected %d variable genes\n', length(sel.g)))
sel.g <- intersect(sel.g, rownames(expr))
cat(sprintf('%d of these are in expression matrix.\n', length(sel.g))) if (is.numeric(seed)) {
set.seed(seed)
} dm <- dim.red(expr[sel.g, ], max.dim, ev.red.th, do.scale.result = TRUE) sim.mat <- jacc.sim(dm, k) gr <- graph_from_adjacency_matrix(sim.mat, mode='undirected', weighted=TRUE, diag=FALSE)
cl <- as.numeric(membership(cluster_louvain(gr))) results <- list()
results$dm <- dm
results$clustering <- cl
results$sel.g <- sel.g
results$sim.mat <- sim.mat
results$gr <- gr
cat('Clustering table\n')
print(table(results$clustering))
return(results)
}

  

  

单细胞数据高级分析之初步降维和聚类 | Dimensionality reduction | Clustering的更多相关文章

  1. 单细胞数据高级分析之构建成熟路径 | Identifying a maturation trajectory

    其实就是另一种形式的打分. 个人点评这种方法: 这篇文章发表在nature上,有点奇怪,个人感觉创新性和重要性还不够格,工具很多,但是本文基本都是自己开发的算法(毕竟satji就是搞统计出身的). 但 ...

  2. 单细胞数据高级分析之消除细胞周期因素 | Removal of cell cycle effect

    The normalization method described above aims to reduce the effect of technical factors in scRNA-seq ...

  3. 第八章——降维(Dimensionality Reduction)

    机器学习问题可能包含成百上千的特征.特征数量过多,不仅使得训练很耗时,而且难以找到解决方案.这一问题被称为维数灾难(curse of dimensionality).为简化问题,加速训练,就需要降维了 ...

  4. 《Wireshark数据包分析实战》 - http背后,tcp/ip抓包分析

    作为网络开发人员,使用fiddler无疑是最好的选择,方便易用功能强. 但是什么作为爱学习的同学,是不应该止步于http协议的,学习wireshark则可以满足这方面的需求.wireshark作为抓取 ...

  5. 第二篇:智能电网(Smart Grid)中的数据工程与大数据案例分析

    前言 上篇文章中讲到,在智能电网的控制与管理侧中,数据的分析和挖掘.可视化等工作属于核心环节.除此之外,二次侧中需要对数据进行采集,数据共享平台的搭建显然也涉及到数据的管理.那么在智能电网领域中,数据 ...

  6. 【Social listening实操】作为一个合格的“增长黑客”,你还得重视外部数据的分析!

    本文转自知乎 作者:苏格兰折耳喵 ----------------------------------------------------- 在本文中,作者引出了"外部数据"这一概 ...

  7. Wireshark数据包分析(一)——使用入门

    Wireshark简介: Wireshark是一款最流行和强大的开源数据包抓包与分析工具,没有之一.在SecTools安全社区里颇受欢迎,曾一度超越Metasploit.Nessus.Aircrack ...

  8. 通过WireShark抓取iOS联网数据实例分析

    本文转载至http://blog.csdn.net/lixing333/article/details/7782539 iosiphone网络filter工具 我在另外一篇博客里,介绍了一款比Wire ...

  9. [学习笔记] numpy次成分分析和PCA降维

    存个代码,以后参考. numpy次成分分析和PCA降维 SVD分解做次成分分析 原图: 次成分复原图: 代码: import numpy as np from numpy import linalg ...

随机推荐

  1. hdu 1151 Air Raid - 二分匹配

    Consider a town where all the streets are one-way and each street leads from one intersection to ano ...

  2. Python3 tkinter基础 Listbox Button 点击按钮删除选中的单个元素

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  3. 《编写高质量代码:Web 前端开发修炼之道》 笔记与读后感

    编写高质量代码:Web 前端开发修炼之道/曹刘阳著. —北京:机械工业出版社,2010.5 第一版 涉及到的知识点: 1. CSS Sprites 在国内很多人叫css精灵,是一种网页图片应用处理方式 ...

  4. 浅尝flutter中的http请求

    import 'package:flutter/material.dart'; class News extends StatefulWidget { final String title,imgli ...

  5. 【做题】Codeforces Round #453 (Div. 1) D. Weighting a Tree——拆环

    前言:结论题似乎是我的硬伤…… 题意是给你一个无向图,已知连接到每一个点的边的权值和(为整数,且属于区间[-n,n]),需要求出每条边权值的一个合法解(都要是在区间[-2*n^2,2*n^2]内的整数 ...

  6. (转)mblog解读(二)

    (二期)12.开源博客项目mblog解读(二) [课程12]freema...模板.xmind77.9KB [课程12]hibernat...arch.xmind0.1MB freemarker模板技 ...

  7. 【bzoj1706】[usaco2007 Nov]relays 奶牛接力跑

    题意 给出一张无向图,求出恰巧经过n条边的最短路. 题解 考虑先离散化,那么点的个数只会有202个最多.于是复杂度里面就可以有一个\(n^3\).考虑构造矩阵\(d^1\)表示经过一条边的最短路,那么 ...

  8. 题解——UVA11997 K Smallest Sums

    题面 背景 输入 输出 翻译(渣自翻) 给定K个包含K个数字的表,要求将其能产生的\( k^{k} \)个值中最小的K个输出出来 题解 k路归并问题的经典问题 可以转化为二路归并问题求解 考虑A[], ...

  9. 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network

    Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...

  10. %lld 和 %I64d的区别

    参考一个博客的链接:https://blog.csdn.net/thunders01/article/details/38879553