原文地址:

https://www.cnblogs.com/pinard/p/9669263.html

-----------------------------------------------------------------------------------------------------

强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learning算法。

    Q-Learning这一篇对应Sutton书的第六章部分和UCL强化学习课程的第五讲部分。

1. Q-Learning算法的引入    

这一类强化学习的问题求解不需要环境的状态转化模型,是不基于模型的强化学习问题求解方法。对于它的控制问题求解,和蒙特卡罗法类似,都是价值迭代,即通过价值函数的更新,来更新策略,通过策略来产生新的状态和即时奖励,进而更新价值函数。一直进行下去,直到价值函数和策略都收敛。

再回顾下时序差分法的控制问题,可以分为两类,一类是在线控制,即一直使用一个策略来更新价值函数和选择新的动作,比如我们上一篇讲到的SARSA, 而另一类是离线控制,会使用两个控制策略,一个策略用于选择新的动作,另一个策略用于更新价值函数。这一类的经典算法就是Q-Learning。

对于Q-Learning,我们会使用ε-贪婪法来选择新的动作,这部分和SARSA完全相同。但是对于价值函数的更新,Q-Learning使用的是贪婪法,而不是SARSA的ε-贪婪法。这一点就是SARSA和Q-Learning本质的区别。

2. Q-Learning算法概述

    Q-Learning算法的拓补图入下图所示:

    下面我们对Q-Learning算法做一个总结。

3. Q-Learning算法流程

    下面我们总结下Q-Learning算法的流程。

4. Q-Learning算法实例:Windy GridWorld

我们还是使用和SARSA一样的例子来研究Q-Learning。如果对windy gridworld的问题还不熟悉,可以复习强化学习(六)时序差分在线控制算法SARSA第4节的第二段。

完整的代码参见我的github: https://github.com/ljpzzz/machinelearning/blob/master/reinforcement-learning/q_learning_windy_world.py

    绝大部分代码和SARSA是类似的。这里我们可以重点比较和SARSA不同的部分。区别都在episode这个函数里面。

  1. # play for an episode
  2. def episode(q_value):
  3. # track the total time steps in this episode
  4. time = 0
  5.  
  6. # initialize state
  7. state = START
  8.  
  9. while state != GOAL:
  10. # choose an action based on epsilon-greedy algorithm
  11. if np.random.binomial(1, EPSILON) == 1:
  12. action = np.random.choice(ACTIONS)
  13. else:
  14. values_ = q_value[state[0], state[1], :]
  15. action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])

  1. next_state = step(state, action)
  1. def step(state, action):
  2. i, j = state
  3. if action == ACTION_UP:
  4. return [max(i - 1 - WIND[j], 0), j]
  5. elif action == ACTION_DOWN:
  6. return [max(min(i + 1 - WIND[j], WORLD_HEIGHT - 1), 0), j]
  7. elif action == ACTION_LEFT:
  8. return [max(i - WIND[j], 0), max(j - 1, 0)]
  9. elif action == ACTION_RIGHT:
  10. return [max(i - WIND[j], 0), min(j + 1, WORLD_WIDTH - 1)]
  11. else:
  12. assert False

  1. values_ = q_value[next_state[0], next_state[1], :]
  2. next_action = np.random.choice([action_ for action_, value_ in enumerate(values_) if value_ == np.max(values_)])
  3.  
  4. # Sarsa update
  5. q_value[state[0], state[1], action] += \
  6. ALPHA * (REWARD + q_value[next_state[0], next_state[1], next_action] -
  7. q_value[state[0], state[1], action])
  8. state = next_state

    跑完完整的代码,大家可以很容易得到这个问题的最优解,进而得到在每个格子里的最优贪婪策略。

5. SARSA vs Q-Learning

现在SARSA和Q-Learning算法我们都讲完了,那么作为时序差分控制算法的两种经典方法吗,他们都有说明特点,各自适用于什么样的场景呢?

另外一个就是Q-Learning直接学习最优策略,但是最优策略会依赖于训练中产生的一系列数据,所以受样本数据的影响较大,因此受到训练数据方差的影响很大,甚至会影响Q函数的收敛。Q-Learning的深度强化学习版Deep Q-Learning也有这个问题。

在学习过程中,SARSA在收敛的过程中鼓励探索,这样学习过程会比较平滑,不至于过于激进,导致出现像Q-Learning可能遇到一些特殊的最优“陷阱”。比如经典的强化学习问题"Cliff Walk"

在实际应用中,如果我们是在模拟环境中训练强化学习模型,推荐使用Q-Learning,    如果是在线生产环境中训练模型,则推荐使用SARSA

6. Q-Learning结语        

对于Q-Learning和SARSA这样的时序差分算法,对于小型的强化学习问题是非常灵活有效的,但是在大数据时代,异常复杂的状态和可选动作,使Q-Learning和SARSA要维护的Q表异常的大,甚至远远超出内存,这限制了时序差分算法的应用场景。在深度学习兴起后,基于深度学习的强化学习开始占主导地位,因此从下一篇开始我们开始讨论深度强化学习的建模思路。

(欢迎转载,转载请注明出处。欢迎沟通交流: liujianping-ok@163.com)

-----------------------------------------------------------------------------------------

【转载】 强化学习(七)时序差分离线控制算法Q-Learning的更多相关文章

  1. 强化学习(七)时序差分离线控制算法Q-Learning

    在强化学习(六)时序差分在线控制算法SARSA中我们讨论了时序差分的在线控制算法SARSA,而另一类时序差分的离线控制算法还没有讨论,因此本文我们关注于时序差分离线控制算法,主要是经典的Q-Learn ...

  2. 【转载】 强化学习(六)时序差分在线控制算法SARSA

    原文地址: https://www.cnblogs.com/pinard/p/9614290.html ------------------------------------------------ ...

  3. 强化学习(六)时序差分在线控制算法SARSA

    在强化学习(五)用时序差分法(TD)求解中,我们讨论了用时序差分来求解强化学习预测问题的方法,但是对控制算法的求解过程没有深入,本文我们就对时序差分的在线控制算法SARSA做详细的讨论. SARSA这 ...

  4. 强化学习8-时序差分控制离线算法Q-Learning

    Q-Learning和Sarsa一样是基于时序差分的控制算法,那两者有什么区别呢? 这里已经必须引入新的概念 时序差分控制算法的分类:在线和离线 在线控制算法:一直使用一个策略选择动作和更新价值函数, ...

  5. 强化学习4-时序差分TD

    之前讲到强化学习在不基于模型时可以用蒙特卡罗方法求解,但是蒙特卡罗方法需要在每次采样时生产完整序列,而在现实中,我们很可能无法生成完整序列,那么又该如何解决这类强化学习问题呢? 由贝尔曼方程 vπ(s ...

  6. 强化学习七 - Policy Gradient Methods

    一.前言 之前我们讨论的所有问题都是先学习action value,再根据action value 来选择action(无论是根据greedy policy选择使得action value 最大的ac ...

  7. 强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning)

    强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introductio ...

  8. 强化学习之 免模型学习(model-free based learning)

    强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现 ...

  9. Flink + 强化学习 搭建实时推荐系统

    如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个 ...

随机推荐

  1. python爬虫基本原理及入门

    爬虫:请求目标网站并获得数据的程序 爬虫的基本步骤: 使用python自带的urllib库请求百度: import urllib.request response = urllib.request.u ...

  2. Vuejs实现轮播图

    css: <style type="text/css"> * { margin: 0; padding: 0; list-style: none; } .clearfi ...

  3. 数组Array.sort()排序的方法

    数组sort排序 sort比较次数,sort用法,sort常用 描述 方法sort()将在原数组上对数组元素进行排序,即排序时不创建新的数组副本.如果调用方法sort()时没有使用参数,将按字母顺序( ...

  4. 【转】js生成接口请求参数签名加密

    js生成接口请求参数签名加密 签名算法规则: 第一步,设所有发送或者接收到的数据为集合M,将集合M内非空参数值的参数按照参数名ASCII码从小到大排序(字典序),使用URL键值对的格式(即key1=v ...

  5. [转]java异常中Exception捕获不到的异常

    一 概念 众所周知java提供了丰富的异常类,这些异常类之间有严格的集成关系,分类为 父类Throwable Throwable的两个子类Error和Exception Exception的两个子类C ...

  6. startActivityForResult的用法,以及intent传递图片

    开启startActivityForResult. Intent intent = new Intent(); intent.setClass(MainActivity.this, MipcaActi ...

  7. Redis在linux环境下的安装和部署

    官网:http://redis.io          windows版本下载地址https://github.com/MicrosoftArchive/redis/releases 1Redis建议 ...

  8. Ubuntu16.10下使用VSCode开发.netcore

    按照通常的套路,首先创建一个空白的解决方案,需要用到.netcore sdk命令: dotnet new sln -o dotnetcore_tutrorial 这个时候可以看到在目标目录下生成了一个 ...

  9. java ArrayList 迭代器快速失败源码分析

    先来看一个例子: @Test void test2() { ArrayList<String> list = new ArrayList<String>(); list.add ...

  10. webpack+typescript

    1. npm install --save typescript 2. npm install --save ts-loader webpack.config.js module.exports = ...