CSU-1980 不堪重负的树

Description

小X非常喜欢树,然后他生成了一个大森林给自己玩。

玩着玩着,小X陷入了沉思。

  • 一棵树由N个节点组成,编号为i的节点有一个价值Wi。
  • 假设从树根出发前往第i个节点(可能是树根自己),一共需要经过Di个节点(包括起点和终点),那么这个节点对这棵树产生的负担就是Di与Wi的乘积。
  • 对于一棵树而言,这棵树的负担值为所有节点对它产生的负担之和。

小X学习了dfs,如果他知道树的结构,他当然可以很容易地算出树的负担值。可是现在沉思中的小X并不知道树的结构形态,他只知道一棵二叉树的中序遍历以及每个节点的价值,那么这棵二叉树可能的最小负担值是多少呢?

Input

第一行为一个正整数T(T≤20)表示数据组数。

每组数据包括三行。

第一行为一个正整数N(N≤200)。

第二行为N个正整数Wi(Wi≤108),表示编号为i的节点的价值。

第三行为N个正整数Pi(Pi≤N),为一个1~N的排列,表示二叉树的中序遍历结果。

Output

对于每组数据,输出一行一个正整数,表示这棵树可能的最小负担值。

Sample Input

2
4
1 2 3 4
1 2 3 4
7
1 1 1 1 1 1 1
4 2 3 5 7 1 6

Sample Output

18
17

Hint

对于第一个样例,树根为3,3的左儿子是2,3的右儿子是4,2的左儿子是1,这样构成的树可以达到最小负担。

对于第二个样例,对应的满二叉树可以达到最小负担。


题解

首先我们要了解中序遍历,首先仅根据中序遍历是无法确定一颗树的,如果选定一个节点作为根节点,那么这个点左侧序列的点即为该节点的左子树,右边为右子树。这样我们很容易想到这个题可以区间DP

按区间长度从小到大枚举左右端点,枚举中间点做根,因为当一棵树成为一个点的子树时,就会增加子树节点价值和的负担值,所以对于l和r区间,如果l...(k - 1)成为第k个点的左子树,(k + 1)...r成为第k个点的右子树,那么就会增加\(pre[r] - pre[l]\)的负担值(pre为按照序列顺序的前缀和),加上原先两棵子树的负担值, 所以转移方程为

\[dp[l][r] = min(dp[l][k - 1] + dp[k + 1][r] + pre[r] - pre[l - 1], dp[l][r])
\]

初始化\(dp[i][i]\)为序列上第i个数对应的节点的权值,其他均为最大值

注意细节,如果一开始将\(dp[i][j]\)全部赋为inf,那么转移时注意判断中间点是区间左右端点的情况,否则左右端点的情况答案会为inf,因此WA了一发

#include<bits/stdc++.h>
#define maxn 250
using namespace std;
long long w[maxn];
int a[maxn];
long long f[maxn][maxn];
long long pre[maxn];
int main() {
int t;
scanf("%d", &t);
while (t--) {
int n;
scanf("%d", &n);
for (int i = 1; i <= n; i++) {
scanf("%lld", &w[i]);
}
for (int i = 1; i <= n; i++) {
scanf("%d", &a[i]);
}
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
f[i][j] = 0x7fffffffffffffff;
}
}
for (int i = 1; i <= n; i++) {
pre[i] = pre[i - 1] + w[a[i]];
f[i][i] = w[a[i]];
}
for (int len = 2; len <= n; len++) {
for (int i = 1; i <= n - len + 1; i++) {
int l = i, r = i + len - 1;
f[l][r] = min(f[l + 1][r], f[l][r - 1]) + pre[r] - pre[l - 1];
for (int k = l + 1; k <= r - 1; k++) {
f[l][r] = min(f[l][k - 1] + f[k + 1][r] + pre[r] - pre[l - 1], f[l][r]);
}
}
}
cout << f[1][n] << endl;
}
}
/**********************************************************************
Problem: 1980
User: Artoriax
Language: C++
Result: AC
Time:152 ms
Memory:2516 kb
**********************************************************************/

CSU-1980 不堪重负的树的更多相关文章

  1. csu 1757(贪心或者树状数组)

    1757: 火车入站 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 209  Solved: 51[Submit][Status][Web Board] ...

  2. [csu/coj 1080]划分树求区间前k大数和

    题意:从某个区间内最多选择k个数,使得和最大 思路:首先题目给定的数有负数,如果区间前k大出现负数,那么负数不选和更大,于是对于所有最优选择,负数不会出现,所以用0取代负数,问题便转化为区间的前k大数 ...

  3. 中南大学2019年ACM寒假集训前期训练题集(基础题)

    先写一部分,持续到更新完. A: 寒衣调 Description 男从戎,女守家.一夜,狼烟四起,男战死沙场.从此一道黄泉,两地离别.最后,女终于在等待中老去逝去.逝去的最后是换尽一生等到的相逢和团圆 ...

  4. CSU 1809 Parenthesis(线段树+前缀和)

    Parenthesis Problem Description: Bobo has a balanced parenthesis sequence P=p1 p2-pn of length n and ...

  5. 【树状数组】CSU 1811 Tree Intersection (2016湖南省第十二届大学生计算机程序设计竞赛)

    题目链接: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1811 题目大意: 一棵树,N(2<=N<=105)个节点,每个节点有一种颜 ...

  6. CSU 1809 - Parenthesis - [前缀和+维护区间最小值][线段树/RMQ]

    题目链接:http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1809 Bobo has a balanced parenthesis sequenc ...

  7. CSU 1805 Three Capitals(矩阵树定理+Best定理)

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=1805 题意: A和B之间有a条边,A和G之间有b条边,B和G之间有c条边.现在从A点出发走遍所 ...

  8. Trie树 + DFS - CSU 1457 Boggle

    Boggle Problem's Link: http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1457 Mean: 给定n个串,有m个询问. 每个询问 ...

  9. CSU 2151 集训难度【多标记线段树】

    http://acm.csu.edu.cn/csuoj/problemset/problem?pid=2151 Input 第一行三个数n,m,v0 表示有n名萌新和m次调整,初始时全部萌新的集训难度 ...

随机推荐

  1. Redis 优缺点

    REmote DIctionary Server(Redis) 是一个由Salvatore Sanfilippo写的key-value存储系统. Redis是一个开源的使用ANSI C语言编写.遵守B ...

  2. SQL Server 08版与14版处理重复行的方式

    在项目中,利用循环拼接成了插入多行数据的SQL语句: Insert into table(col1,col2)vaules(value11,value21); Insert into table(co ...

  3. sublime相关小技巧

    1.快速建立一个新文件:Ctrl+n 2.修改多个相同符号:Ctrl+D 3.建立语言后缀的文件保存,例如我想创建PHP的语言脚本,先按Ctrl+Shift+p,打开Command Palette,输 ...

  4. pat乙级1059

    1.c++ 位数不够前面补零: printf("04d", i); 位数不够前面补空格(右对齐): printf("4d", i); 位数不够后面补空格(左对齐 ...

  5. co-dialog弹出框组件-版本v2.0.0

    co-dialog theme 访问git:co-dialog 版本v2.0.0 主题2 coog.app('.theme2').use({ title: 'JUST CHECKING.', mess ...

  6. 关于mongodb的日志

    mongodb的日志与profile相似,在启动mongod时 可以用verbose这个参数配置他的日志详细程度,分为一个v到5个v,其中v越多,详细度越高   mogod.conf port = d ...

  7. 前端三大框架 Vue.js、AngularJS、React 的区别

    Vue.js Vue.js 是一种构建数据驱动的Web界面的渐进式框架,Vue.js 采用自底向上增量开发的设计. Vue.js 轻量高效,数据双向绑定(响应式数据绑定), 它会自动响应数据的变化情况 ...

  8. 十三、MySQL WHERE 子句

    MySQL WHERE 子句 我们知道从 MySQL 表中使用 SQL SELECT 语句来读取数据. 如需有条件地从表中选取数据,可将 WHERE 子句添加到 SELECT 语句中. 语法 以下是 ...

  9. Python 文件读写 文件和路径

    1.在Windows上,使用倒斜杆作为文件夹之间的分隔符,在Linux上,使用正斜杠作为路径分隔符.在编写Python脚本时,可以os.path.join()函数来处理 在Windows环境下命令如下 ...

  10. JZOJ 5185. 【NOIP2017提高组模拟6.30】tty's sequence

    5185. [NOIP2017提高组模拟6.30]tty's sequence (Standard IO) Time Limits: 1000 ms  Memory Limits: 262144 KB ...