题目描述

在一个n*n的方格里,每个格子里都有一个正整数。从中取出若干数,使得任意两个取出的数所在格子没有公共边,且取出的数的总和尽量大。

输入

第一行一个数n;(n<=30) 接下来n行每行n个数描述一个方阵

输出

仅一个数,即最大和

样例输入

2
1 2
3 5

样例输出

6


题解

网络流最小割

将原图黑白染色,分别和源点和汇点连边,容量为原数;相邻的点连边,容量为inf。

答案为sum-mincut。

#include <cstdio>
#include <cstring>
#include <queue>
#define N 1000
#define M 10000
#define inf 0x7fffffff
#define pos(i , j) (i - 1) * n + j
using namespace std;
queue<int> q;
int map[35][35] , head[N] , to[M] , val[M] , next[M] , cnt = 1 , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , j , sum = 0;
scanf("%d" , &n) , s = 0 , t = n * n + 1;
for(i = 1 ; i <= n ; i ++ )
for(j = 1 ; j <= n ; j ++ )
scanf("%d" , &map[i][j]) , sum += map[i][j];
for(i = 1 ; i <= n ; i ++ )
{
for(j = 1 ; j <= n ; j ++ )
{
if((i + j) % 2 == 0)
{
add(s , pos(i , j) , map[i][j]);
if(i > 1) add(pos(i , j) , pos(i - 1 , j) , inf);
if(i < n) add(pos(i , j) , pos(i + 1 , j) , inf);
if(j > 1) add(pos(i , j) , pos(i , j - 1) , inf);
if(j < n) add(pos(i , j) , pos(i , j + 1) , inf);
}
else add(pos(i , j) , t , map[i][j]);
}
}
while(bfs()) sum -= dinic(s , inf);
printf("%d\n" , sum);
return 0;
}

【bzoj1475】方格取数 网络流最小割的更多相关文章

  1. [BZOJ1475]方格取数 网络流 最小割

    1475: 方格取数 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1025  Solved: 512[Submit][Status][Discuss] ...

  2. HDU 1569 方格取数(2) (最小割)

    方格取数(2) Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Su ...

  3. luogu2774 [网络流24题]方格取数问题 (最小割)

    常见套路:棋盘黑白染色,就变成了一张二分图 然后如果选了黑点,四周的白点就不能选了,也是最小割的套路.先把所有价值加起来,再减掉一个最少的不能选的价值,也就是割掉表示不选 建边(S,黑点i,v[i]) ...

  4. LuoguP2774 方格取数问题(最小割)

    题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...

  5. 洛谷P2774 方格取数问题(最小割)

    题意 $n \times m$的矩阵,不能取相邻的元素,问最大能取多少 Sol 首先补集转化一下:最大权值 = sum - 使图不连通的最小权值 进行黑白染色 从S向黑点连权值为点权的边 从白点向T连 ...

  6. BZOJ 1475: 方格取数( 网络流 )

    本来想写道水题....结果调了这么久!就是一个 define 里面少加了个括号 ! 二分图最大点权独立集...黑白染色一下 , 然后建图 : S -> black_node , white_no ...

  7. [网络流24题#9] [cogs734] 方格取数 [网络流,最大流最小割]

    将网格分为两部分,方法是黑白染色,即判断(i+j)&1即可,分开后从白色格子向黑色格子连边,每个点需要四条(边界点可能更少),也就是每个格子周围的四个方向.之后将源点和汇点分别于黑白格子连边, ...

  8. P2774 方格取数(网络流)

    https://www.luogu.com.cn/problem/P2774 在一个有 m×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的 ...

  9. BZOJ1324Exca王者之剑&BZOJ1475方格取数——二分图最大独立集

    题目描述   输入 第一行给出数字N,M代表行列数.N,M均小于等于100 下面N行M列用于描述数字矩阵 输出 输出最多可以拿到多少块宝石 样例输入 2 2 1 2 2 1 样例输出 4   题意就是 ...

随机推荐

  1. 如何在Mac上创建.txt文件

    cd ~/Desktoptouch test.txt cd 需要创建的文件夹目录vi 需要创建文件的文件名.txt

  2. edge不能上网-代码 INET_E_RESOURCE_NOT_FOUND

    这个问题 ,网上有很多解决方法,我基本都测试了一遍,可是我都没有用 情况:首先,我开始的时候是可以用的,然后在公司,开了代理,就不能使用了,这是我之后多次尝试发现的,所以你也遇到和我一样的情况不必惊慌 ...

  3. 转:Python字典与集合操作总结

    转自:http://blog.csdn.net/business122/article/details/7537014 一.创建字典 方法①: >>> dict1 = {} > ...

  4. 操作系统(6)_虚拟存储管理_李善平ppt

    image含各种段. 有些不需要的页可能永远不需要装入内存,可能只有百分之70-80是异常情况采用的,这种代码就可以放入硬盘. 抖动实际就是进程数太多导致内存不够用造成的. 页面换入换出在内存和磁盘之 ...

  5. ARC机制中的Strong和weak

    什么是ARC Automatic Reference Counting,自动引用计数,即ARC,可以说是WWDC2011和iOS5所引入的最大的变革和最激动人心的变化.ARC是新的LLVM 3.0编译 ...

  6. NOIP2018 全国热身赛 第二场 (不开放)

    NOIP2018 全国热身赛 第二场 (不开放) 题目链接:http://noi.ac/contest/26/problem/60 一道蛮有趣的题目. 然后比赛傻逼了. 即将做出来的时候去做别的题了. ...

  7. TO_DATS() AS ABAP_DATE

    有的时候一个想不到的小问题,,才是致命的问题!

  8. 初识Java程序,编写简单代码?

    Dear All: 初识Java程序,编写简单代码? 首先小编在这里说下我们今天编写Java程序使用的是 eclipse 开发工具! 1.下载eclipse 官网地址:http://www.eclip ...

  9. linux配置邮箱服务

    配置邮箱服务Linux常见的邮箱客户端是mail或mutt:服务端有sendmail服务(centos 5).postfix服务(centos 6).这里我们不使用本地的邮件服务,而是使用本地的邮件客 ...

  10. (转)iOS 对矢量图片的支持如何?

    简单说,iOS 支持矢量图片,不过支持的一般.在系统层面上,iOS 对矢量绘图支持得很好.iOS 的 Core Graphics 框架带有很多矢量绘图命令,简单一些的直线.矩形.椭圆,复杂一些的贝赛尔 ...