摘要:

  1.算法概述

  2.算法推导

  3.算法特性及优缺点

  4.注意事项

  5.实现和具体例子

  6.适用场合

内容:

1.算法概述

  贝叶斯分类算法是统计学的一种分类方法,其分类原理就是利用贝叶斯公式根据某对象的先验概率计算出其后验概率,然后选择具有最大后验概率的类作为该对象所属的类。

之所以称之为"朴素",是因为贝叶斯分类只做最原始、最简单的假设:

  1,所有的特征之间是统计独立的;

  2,所有的特征地位相同。那么假设某样本x有a1,...,aM个属性

那么有:P(x)=P(a1,...,aM) = P(a1)*...*P(aM);这里给出NB的模型函数:

 根据变量的分布不同,NB也分为以下3类:

  朴素贝叶斯的高斯模型(连续变量,符合高斯分布

  朴素贝叶斯的多项式模型(离散变量,符合多项分布

  朴素贝叶斯的伯努利模型(离散变量,符合二项分布),在文本分类的情境中,被用来训练和使用这一分类器的是词语同现向量

2.算法推导

  贝叶斯定理:

其中P(A|B)是在B发生的情况下A发生的可能性。

在贝叶斯定理中,每个名词都有约定俗成的名称:

P(A)是A的先验概率边缘概率。之所以称为"先验"是因为它不考虑任何B方面的因素。

P(A|B)是已知B发生后A的条件概率,也由于得自B的取值而被称作A的后验概率

P(B|A)是已知A发生后B的条件概率,也由于得自A的取值而被称作B的后验概率

P(B)是B的先验概率边缘概率,也作标准化常量(normalizing constant).

由贝叶斯公式和各特征相互独立的情况下,将贝叶斯公式A替换为y,B替换为X;去掉分母(同一样本的分母不影响整体的大小)得到如下公式:

条件概率的计算方法:

1,离散分布-当特征属性为离散值时,只要统计训练样本中各个划分在每个类别中出现的频率即可用来估计P(a|y)。

2,连续分布-当特征属性为连续值时,通常假定a|y服从高斯分布(正态分布)。

即:,而

3.算法特性及优缺点

  优点:算法简单、所需估计参数很少、对缺失数据不太敏感。另外朴素贝叶斯的计算过程类条件概率等计算彼此是独立的,因此特别适于分布式计算。朴素贝叶斯属于生成式模型,收敛速度将快于判别模型(如逻辑回归);天然可以处理多分类问题

  缺点:因为朴素贝叶斯分类假设样本各个特征之间相互独立,这个假设在实际应用中往往是不成立的,从而影响分类正确性;不能学习特征间的相互作用;对输入数据的表达形式很敏感。

4.注意事项

4.1 取对数:

  实际项目中,概率P往往是值很小的小数,连续的微小小数相乘容易造成下溢出使乘积为0或者得不到正确答案。一种解决办法就是对乘积取自然对数,将连乘变为连加,ln(AB)=lnA+lnB。

4.2 Laplace校准:

  如果新特征出现,会导致类别的条件概率为0,最终出现0/0 未定义的情况 ;修改后的的表达式为:每个z=j的分子都加1,分母加k(类别的个数)。

  

5.实现和具体例子

  文本分类

   垃圾邮件过滤:吴恩达的斯坦福公开课

6.适用场合

  是否支持大规模数据:支持,并且有分布式实现

  特征维度:可以很高

  是否有 Online 算法:有(参考自

  特征处理:支持数值型,类别型类型  

朴素贝叶斯(NB)复习总结的更多相关文章

  1. 朴素贝叶斯(Naive Bayes)

    1.朴素贝叶斯模型 朴素贝叶斯分类器是一种有监督算法,并且是一种生成模型,简单易于实现,且效果也不错,需要注意,朴素贝叶斯是一种线性模型,他是是基于贝叶斯定理的算法,贝叶斯定理的形式如下: \[P(Y ...

  2. Logistic 最大熵 朴素贝叶斯 HMM MEMM CRF 几个模型的总结

    朴素贝叶斯(NB) , 最大熵(MaxEnt) (逻辑回归, LR), 因马尔科夫模型(HMM),  最大熵马尔科夫模型(MEMM), 条件随机场(CRF) 这几个模型之间有千丝万缕的联系,本文首先会 ...

  3. Python实现nb(朴素贝叶斯)

    Python实现nb(朴素贝叶斯) 运行环境 Pyhton3 numpy科学计算模块 计算过程 st=>start: 开始 op1=>operation: 读入数据 op2=>ope ...

  4. 【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

    参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/ ...

  5. 【机器学习与R语言】3-概率学习朴素贝叶斯(NB)

    目录 1.理解朴素贝叶斯 1)基本概念 2)朴素贝叶斯算法 2.朴素贝斯分类应用 1)收集数据 2)探索和准备数据 3)训练模型 4)评估模型性能 5)提升模型性能 1.理解朴素贝叶斯 1)基本概念 ...

  6. Stanford大学机器学习公开课(六):朴素贝叶斯多项式模型、神经网络、SVM初步

    (一)朴素贝叶斯多项式事件模型 在上篇笔记中,那个最基本的NB模型被称为多元伯努利事件模型(Multivariate Bernoulli Event Model,以下简称 NB-MBEM).该模型有多 ...

  7. Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

    (一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解 ...

  8. Spark朴素贝叶斯(naiveBayes)

    朴素贝叶斯(Naïve Bayes) 介绍 Byesian算法是统计学的分类方法,它是一种利用概率统计知识进行分类的算法.在许多场合,朴素贝叶斯分类算法可以与决策树和神经网络分类算法想媲美,该算法能运 ...

  9. R语言︱贝叶斯网络语言实现及与朴素贝叶斯区别(笔记)

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 一.贝叶斯网络与朴素贝叶斯的区别 朴素贝叶斯的 ...

随机推荐

  1. 【BZOJ1911】[Apio2010]特别行动队 斜率优化DP

    想了好久啊....——黑字为第一次更新.——这里是第二次更新,维护上下凸包据题而论,第一种方法是化式子的方法,需要好的化式子的方法,第二种是偏向几何,十分好想,纯正的维护凸包的方法,推荐. 用了我感觉 ...

  2. gulp的基本使用

    gulp 了解 首先我们了解一下什么是gulp, gulp是前端自动化构建工具,在开发过程中很多重复的任务,我们都可以正确的使用gulp来完成,gulp基于nodejs,使用gulp可以做很多事情 例 ...

  3. UVA103 dp基础题,DAG模型

    1.UVA103 嵌套n维空间 DAG模型记忆化搜索,或者 最长上升子序列. 2.dp[i]=max( dp[j]+1),(第i个小于第j个) (1) //DAG模型记忆化搜索 #include< ...

  4. ATL封装IE内核启示:使用Win32/ATL建立窗口

    开发大型GUI界面程序MFC当仁不让,但如果是开发图形应用程序,并不需要大规模界面控件,没有必要链接庞大的MFC库,直接使用platform sdk会很麻烦,这时ATL中的关于Windows的封装就是 ...

  5. Redis集群最佳实践

    今天我们来聊一聊Redis集群.先看看集群的特点,我对它的理解是要需要同时满足高可用性以及可扩展性,即任何时候对外的接口都要是基本可用的并具备一定的灾备能力,同时节点的数量能够根据业务量级的大小动态的 ...

  6. 39个让你受益的HTML5教程

    1. 五分钟入门HTML5 (Learn HTML5 in 5 Minutes!) By Jennifer Marsman 毫无疑问,HTML5是一个热门话题.如果你需要一个迅速了解HTML基础的速成 ...

  7. SQL 查找重复项及批量修改数据成固定格式

    1.查找表中多余的重复记录,重复记录是根据单个字段(peopleId)来判断select * from peoplewhere peopleId in (select   peopleId  from ...

  8. / fluxChatDemo / 系列 ——项目安装坑洼简要

    第一部分 1.使用import引入时,路径选错 2.React.Component 注意大写 (极浅的坑都掉,原谅我初级中的初级~还是贴出来吧) 3.不知为何运行起来没有内容,都怪自己不熟就上路,以为 ...

  9. MYSQL 5.0 USING BTREE 错误

    今天遇到个错误,导入数据库的时候报错,最后发现是php版本的问题导致包含 KEY `uniacid` (`uniacid`) USING BTREE 的SQL命令报错 5.1之前的写法: KEY `u ...

  10. HOJ 1797 Red and Black

    传送门  http://acm.hit.edu.cn/hoj/problem/view?id=1797 总体的思路是遍历可以到达的' . ',将其对应的vis数组化为1,然后统计所有为1的vis项; ...