线段树

先看前三个操作,都是区间修改,我们对于信息维护一个二元组(a,b),表示x=max(x+a,b),那么第一个操作就是(a,-inf),第二个是(-a,0),第三个是(-inf,a)

然后看查询,第一个就是维护所有信息,那么考虑合并标记,(a,b)=(max(a1+a2,-inf),max(max(b1+a2,-inf),b2)),这里和-inf取max是为了防止溢出

然后是最后一个查询,其实就是相当于最大前缀和,那么我们考虑维护这个东西,每次下来标记,设为(f,g),f是父节点的最大子段和,g是总和,那么ff=max(max(ff->a,tt->a+f->a,max(tt->b,f->b)),就是可以取原来的和原来的和加上新的操作,可以取max,因为我们希望的是最大值。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 5e5 + ;
const ll inf = 1e16;
inline ll rd()
{
ll x = , f = ; char c = getchar();
while(c < '' || c > '') { if(c == '-') f = -; c = getchar(); }
while(c >= '' && c <= '') { x = x * + c - ''; c = getchar(); }
return x * f;
}
int n, m;
ll a[N];
struct node {
ll A, B;
node() { A = ; B = -inf; }
node(ll _, ll __) : A(_), B(__) {}
node friend max(const node &a, const node &b) {
return node(max(a.A, b.A), max(a.B, b.B));
}
node friend operator + (const node &a, const node &b) {
return node(max(a.A + b.A, -inf), max(max(a.B + b.A, -inf), b.B));
}
bool Null()
{
return A == && B == -inf;
}
} T[N << ], F[N << ];
void paint(int x, node f, node t)
{
F[x] = max(F[x], T[x] + f);
T[x] = T[x] + t;
}
void pd(int x)
{
if(F[x].Null() && T[x].Null()) return;
paint(x << , F[x], T[x]);
paint(x << | , F[x], T[x]);
F[x] = T[x] = node(, -inf);
}
void modify(int l, int r, int x, int a, int b, node t)
{
if(l > b || r < a) return;
if(l >= a && r <= b)
{
paint(x, t, t);
return;
}
pd(x);
int mid = (l + r) >> ;
modify(l, mid, x << , a, b, t);
modify(mid + , r, x << | , a, b, t);
}
int query(int l, int r, int x, int p)
{
if(l == r) return x;
pd(x);
int mid = (l + r) >> ;
if(p <= mid) return query(l, mid, x << , p);
else return query(mid + , r, x << | , p);
}
int main()
{
n = rd();
m = rd();
for(int i = ; i <= n; ++i) a[i] = rd();
while(m--)
{
int opt = rd(), l, r, x;
if(opt == )
{
l = rd();
r = rd();
x = rd();
modify(, n, , l, r, node(x, -inf));
}
if(opt == )
{
l = rd();
r = rd();
x = rd();
modify(, n, , l, r, node(-x, ));
}
if(opt == )
{
l = rd();
r = rd();
x = rd();
modify(, n, , l, r, node(-inf, x));
}
if(opt == )
{
l = rd();
x = query(, n, , l);
printf("%lld\n", max(a[l] + T[x].A, T[x].B));
}
if(opt == )
{
l = rd();
x = query(, n, , l);
printf("%lld\n", max(a[l] + F[x].A, F[x].B));
}
}
return ;
}

bzoj5117的更多相关文章

随机推荐

  1. IOS_DatePicker_PickerView_SegmentControl_键盘处理

    H:/0712/01_UIController_MJViewController.m // MJViewController.m // 01-总结复习 // Created by apple on 1 ...

  2. Sencha touch 初体验

    一.什么是Sencha Touch? Sencha Touch是一个应用手持移动设备的前端js框架,与extjs是同一个门派的,它继承了extjs的优点和缺点.功能很强大,效果很炫丽,效率不高. 二. ...

  3. eclipse工具栏sdk和avd图标

    打开菜单Window -> Customize Perspective -> Command Groups Availability -> 勾选Android SDK and AVD ...

  4. linux之return和exit引发的大问题(vfork和fork)

    在coolshell.cn上看到的一个问题.为此拿来研究一下. 首先 看看return和exit的差别 在linux上分别跑一下这个代码 int main() { return 0; //exit(0 ...

  5. hadoop集群ambari搭建(2)之制作hadoop本地源

    准备好源资源server,我使用之前的一台node4,配置都是1GB内存20GB存储 集群最好的安装方式一定是通过本地源的,假设是公共源,那么网络将会严重影响我们的安装进度.所以制作本地源是每个大数据 ...

  6. python訪问redis

    python訪问redis 1 Linux上安装redis a) 下载 $ wget http://download.redis.io/releases/redis-3.0.5.tar.gz b) 编 ...

  7. 如何使Htm页面使用IE9文档模式

    修改Htm页面的方法之一是,在Head->Title下添加<META http-equiv="X-UA-Compatible" content="IE=9&q ...

  8. switch多分枝语句

    package lianxi; //switch多分枝语句 import java.util.Scanner; public class GetSwitch { public static void ...

  9. 通过css选择器class给元素添加cursor的坑

    笔者在chrome中遇到了奇特的问题,在通过class给元素添加cursor的自定义图片时.出现了"Invald property value"提示,crosshair.help等 ...

  10. 用Darwin开发RTSP级联服务器(拉模式转发)(附源码)

    源码下载地址:https://github.com/EasyDarwin orwww.easydarwin.org 在博客 在Darwin进行实时视频转发的两种模式 中,我们描述了流媒体服务器对源端音 ...