【bzoj3671】[Noi2014]随机数生成器 贪心
题目描述
输入
第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子。第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M 的排列来填入她 N 行 M 列的棋盘,并且小H在初始的 N×M 次交换操作后,又进行了 Q 次额外的交换操作。接下来 Q 行,第 i 行包含两个整数 u_i,v_i,表示第 i 次额外交换操作将交换 T_(u_i )和 T_(v_i ) 的值。
输出
输出一行,包含 N+M-1 个由空格隔开的正整数,表示可以得到的字典序最小的路径序列。
样例输入
1 3 5 1 71
3 4 3
1 7
9 9
4 9
样例输出
1 2 6 8 9 12
题目大意
给定你一个用乱七八糟的方法生成的n*m的矩阵,矩阵中的元素是1~n*m的全排列,问从左上走到右下的路径中,把经过的元素从小到大排序后得到的字典序最小的路径是什么
题解
贪心
其实我真不知道出题人是怎么想的,题目描述搞得和数论似的,结果目的就是给出这个序列 = =
显然要考虑从小到大的n*m个数,如果能选就选,选了就更新其它不能选的位置。
如果一个点被选择,那么它的严格左下方和严格右上方的点都不能被选择,开一个标记数组记录它。
如果扫到一个点,它已经被标记过,那么它的左下(或右上)的点一定都被标记过。适当终止循环,时间复杂度是均摊$O(nm)$的。
但是本题卡内存差评,所以不能开数组记录每次的x,标记数组必须开成bool的等等。
另外本题需要使用桶排序,否则会TLE。
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int val[25000010] , pos[25000010];
bool tag[5010][5010];
int main()
{
int a , b , c , d , n , m , k , q , i , jx , jy , px , py , cnt = 0;
long long x;
scanf("%lld%d%d%d%d%d%d%d" , &x , &a , &b , &c , &d , &n , &m , &q) , k = n * m;
for(i = 1 ; i <= k ; i ++ ) val[i] = i , x = (a * x * x + b * x + c) % d , pos[i] = (int)x;
for(i = 1 ; i <= k ; i ++ ) swap(val[i] , val[pos[i] % i + 1]);
while(q -- ) scanf("%d%d" , &px , &py) , swap(val[px] , val[py]);
for(i = 1 ; i <= k ; i ++ ) pos[val[i]] = i;
for(i = 1 ; i <= k ; i ++ )
{
px = (pos[i] - 1) / m + 1 , py = (pos[i] - 1) % m + 1;
if(!tag[px][py])
{
printf("%d%c" , i , ++cnt == n + m - 1 ? '\n' : ' ');
if(py > 1)
{
for(jx = px + 1 ; jx <= n ; jx ++ )
{
if(tag[jx][py - 1]) break;
for(jy = py - 1 ; jy >= 1 ; jy -- )
{
if(tag[jx][jy]) break;
tag[jx][jy] = 1;
}
}
}
if(py < m)
{
for(jx = px - 1 ; jx >= 1 ; jx -- )
{
if(tag[jx][py + 1]) break;
for(jy = py + 1 ; jy <= m ; jy ++ )
{
if(tag[jx][jy]) break;
tag[jx][jy] = 1;
}
}
}
}
}
return 0;
}
【bzoj3671】[Noi2014]随机数生成器 贪心的更多相关文章
- BZOJ3671: [Noi2014]随机数生成器(贪心)
Time Limit: 50 Sec Memory Limit: 256 MBSubmit: 2098 Solved: 946[Submit][Status][Discuss] Descripti ...
- [bzoj3671][Noi2014][随机数生成器] (贪心+位运算+卡空间)
Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M ...
- luogu P2354 [NOI2014]随机数生成器 贪心 卡空间 暴力
LINK:随机数生成器 观察数据范围还是可以把矩阵给生成出来的. 考虑如何求出答案.题目要求把选出的数字从小到大排序后字典序尽可能的小 实际上这个类似于Mex的问题. 所以要从大到小选数字 考虑选择一 ...
- BZOJ3671 [Noi2014]随机数生成器 【贪心】
题目链接 BZOJ3671 题解 模拟题意生成矩阵贪心从小选择即可 每选择一个,就标记其左下右上矩阵 由于每次都是标记一个到边界的矩阵,所以一旦遇到标记过就直接退出即可,可以保证复杂度 还有就是空间和 ...
- bzoj3671 [Noi2014]随机数生成器
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=3671 [题解] 贪心从1...n*m取,开两个5000*5000的数组就够了,可以重复利用, ...
- bzoj 3671 [Noi2014]随机数生成器——贪心(时间复杂度分配)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3671 设 x 为一个点的行号, y 为一个点的列号:原本想着判断一个点能不能选就是看选了的点 ...
- [luogu] P2354 [NOI2014]随机数生成器 (贪心)
Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个整数 N,M,Q ,表示小H希望生成一个1到 N×M ...
- [BZOJ3671][UOJ#6][NOI2014]随机数生成器
[BZOJ3671][UOJ#6][NOI2014]随机数生成器 试题描述 小H最近在研究随机算法.随机算法往往需要通过调用随机数生成函数(例如Pascal中的random和C/C++中的rand)来 ...
- 【BZOJ3671】[Noi2014]随机数生成器 暴力
[BZOJ3535][Noi2014]随机数生成器 Description Input 第1行包含5个整数,依次为 x_0,a,b,c,d ,描述小H采用的随机数生成算法所需的随机种子.第2行包含三个 ...
随机推荐
- 打造自己的JavaScript武器库
自己打造一把趁手的武器,高效率完成前端业务代码. 前言 作为战斗在业务一线的前端,要想少加班,就要想办法提高工作效率.这里提一个小点,我们在业务开发过程中,经常会重复用到日期格式化.url参数转对象. ...
- 【javascript】操作给定的二叉树,将其变换为源二叉树的镜像。
操作给定的二叉树,将其变换为源二叉树的镜像. 输入描述: 二叉树的镜像定义:源二叉树 8 / \ 6 10 / \ / \ 5 7 9 11 镜像二叉树 8 / \ 10 6 / \ / \ 11 9 ...
- andorid 向上滑动控制标题栏显示
要实现这样的功能,原理不难,监听滑动距离再设置标题栏的透明度 下面是监听一个带头view的list实现核心代码: mbar是标题栏 mListView.setOnScrollListener(new ...
- 【Web应用-Kudu】Kudu 管理和诊断 azure web 应用
Azure Kudu是 GitHub 上的一个开源项目,Kudu 站点 (也称为网站控制管理 SCM) 提供了一系列的在线工具,可以帮助用户查看 web 应用的设置,诊断 web 应用,以及安装 w ...
- mysql Expression #1 of ORDER BY clause is not in GROUP BY clause and contains nona
1. 操作mysql的时候提示如下错误 [Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause and cont ...
- License开源许可协议
开源许可协议 License是软件的授权许可,表述了你获得代码后拥有的权利,可以对别人的作品进行何种操作,何种操作又是被禁止的. 开源许可证种类 Open Source Initiative http ...
- LinuxShell(脚本如何编译问题)
想学shell的同学请记住: 如果你写好脚本后不给脚本执行权限那也是不行的: 添加执行权限: chmod +x 脚本名.sh 在Linux shell中有一个脚本编译命令: bash -v 脚本名.s ...
- MySQL数据库安全配置
文章来源:http://www.xfocus.net MySQL数据库安全配置 1.前言 MySQL 是完全网络化的跨平台关系型数据库系统,同时是具有客户机/服务器体系结构的分布式数据库管理系统.它具 ...
- Luogu P3727 曼哈顿计划E 点分治+hash
题目: P3727曼哈顿计划E 分析: 大长题面容易给人一种不可做的错觉,但是这题考的知识点都是我们熟悉的. 稍加分析我们可以得到,我们可以把每个点当成一个单独的游戏,如果k=1,就是简单的nim游戏 ...
- Idea 搭建Maven--web项目(MVC)
小编最近正在学习使用MVC框架,在搭建Maven的项目过程中,遇到了很多问题,上网搜了很多材料才找到答案,为了小编以后查起来方便,也为了向广大小伙伴分享,写了这部片博文,敬我昨天一天的学习结果! 步骤 ...