「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp
题目描述
FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.
The treats are interesting for many reasons:The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.Like fine wines and delicious cheeses, the treats improve with age and command greater prices.The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?
The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.
约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售出后能得到最大的收益.这些零食有以下这些有趣的特性:
•零食按照1..N编号,它们被排成一列放在一个很长的盒子里.盒子的两端都有开口,约翰每
天可以从盒子的任一端取出最外面的一个.
•与美酒与好吃的奶酪相似,这些零食储存得越久就越好吃.当然,这样约翰就可以把它们卖出更高的价钱.
•每份零食的初始价值不一定相同.约翰进货时,第i份零食的初始价值为Vi(1≤Vi≤1000).
•第i份零食如果在被买进后的第a天出售,则它的售价是vi×a.
Vi的是从盒子顶端往下的第i份零食的初始价值.约翰告诉了你所有零食的初始价值,并希望你能帮他计算一下,在这些零食全被卖出后,他最多能得到多少钱.
输入输出格式
输入格式:
Line 1: A single integer, N
Lines 2..N+1: Line i+1 contains the value of treat v(i)
输出格式:
Line 1: The maximum revenue FJ can achieve by selling the treats
输入输出样例
说明
Explanation of the sample:
Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).
FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.
题解
区间dp。
设f[l][r]为还剩l到r的时的最大收益。
转移方程:
j=i+l;
f[i][j]=max(f[i-1][j]+val[i-1]*(n-l+1),f[i][j+1]+val[j+1]*(n-l+1));
也就是f[l][r]是由f[l-1][r]或f[l][r+1]转移而来。
/*
qwerta
P2858 [USACO06FEB]奶牛零食Treats for the Cows
Accepted
100
代码 C++,0.59KB
提交时间 2018-09-16 20:01:06
耗时/内存
129ms, 23280KB
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
int v[];
long long f[][];
int main()
{
//freopen("a.in","r",stdin);
int n;
scanf("%d",&n);
for(int i=;i<=n;++i)
scanf("%d",&v[i]);
for(int l=n-;l>=;--l)
for(int i=;i+l<=n;++i)
{
int j=i+l;
f[i][j]=max(f[i-][j]+(n-l-)*v[i-],f[i][j+]+(n-l-)*v[j+]);
}
long long ans=;
for(int i=;i<=n;++i)
ans=max(ans,f[i][i]+n*v[i]);
cout<<ans;
return ;
}
「USACO06FEB」「LuoguP2858」奶牛零食Treats for the Cows(区间dp的更多相关文章
- [luoguP2858] [USACO06FEB]奶牛零食Treats for the Cows(DP)
传送门 f[i][j][k] 表示 左右两段取到 i .... j 时,取 k 次的最优解 可以优化 k 其实等于 n - j + i 则 f[i][j] = max(f[i + 1][j] + a[ ...
- P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows区间dp,级像矩阵取数, f[i][i+l]=max(f[i+1][i+l]+a[i]*(m-l),f[i][i+l- ...
- bzoj1652 / P2858 [USACO06FEB]奶牛零食Treats for the Cows
P2858 [USACO06FEB]奶牛零食Treats for the Cows 区间dp 设$f[l][r]$为取区间$[l,r]$的最优解,蓝后倒着推 $f[l][r]=max(f[l+1][r ...
- AC日记——[USACO06FEB]奶牛零食Treats for the Cows 洛谷 P2858
[USACO06FEB]奶牛零食Treats for the Cows 思路: 区间DP: 代码: #include <bits/stdc++.h> using namespace std ...
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows 题解
P2858 [USACO06FEB]奶牛零食Treats for the Cows 题目描述 FJ has purchased N (1 <= N <= 2000) yummy treat ...
- 区间DP【p2858】[USACO06FEB]奶牛零食Treats for the Cows
Description 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望 ...
- 洛谷 P2858 [USACO06FEB]奶牛零食Treats for the Cows
题目描述 FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving va ...
- Luogu P2858 [USACO06FEB]奶牛零食Treats for the Cows 【区间dp】By cellur925
题目传送门 做完A Game以后找道区间dp练练手...结果这题没写出来(哭). 和A Game一样的性质,从两边取,但是竟然还有天数,鉴于之前做dp经常在状态中少保存一些东西,所以这次精心设计了状态 ...
- [USACO] 奶牛零食 Treats for the Cows
题目描述 约翰经常给产奶量高的奶牛发特殊津贴,于是很快奶牛们拥有了大笔不知该怎么花的钱.为此,约翰购置了N(1≤N≤2000)份美味的零食来卖给奶牛们.每天约翰售出一份零食.当然约翰希望这些零食全部售 ...
随机推荐
- 为什么硬盘明明还有空间,linux却说硬盘空间不足?inode;mkdir: 无法创建目录"shen1": 设备上没有空间
现象:df -h显示硬盘还有14G空间,但是touch file/mkdir directory都失败,提示硬盘没有空间 原因:df -ia查看下inode的使用情况,发现已经爆了,(下图显示使用88 ...
- mysql 安装配置及经常使用操作
作为关系型数据库的一种,mysql因其占用内存小和开源等特性而兴起.以下简介下关于mysql配置和简单的操作. mysql配置 1.安装文件的下载 免安装版下载地址 :http://dev.mysql ...
- [zlib]_[0基础]_[使用Zlib完整解压zip内容]
场景: 1. 解压文件一般用在下载了一个zip文件之后解压,或者分析某个文件须要解压的操作上. 2. 解压文件,特别是解压带目录的zip文件往往系统没有提供这类Win32 API,当然C#自带库能解压 ...
- 【转载】面向切面编程(AOP)学习
看到这篇文章,学习一下:http://www.ciaoshen.com/2016/10/28/aop/ 想理清一下从“动态代理”,到 “注释”,到“面向切面编程”这么一个技术演进的脉络. 只想讲清楚两 ...
- 如何下载合适自己系统环境的Xdebug
访问https://xdebug.org 在浏览器输入http://localhost/?phpinfo=1 (前提已经安装了wamp环境) Ctrl+a 全选 ,复制 粘贴到刚才的网站的 ...
- odoo 的时差 坑
很多人掉进了odoo的时间坑 odoo约定关于日期的数据,存放在数据库时,以 utc0 时区也就是不带时区 存放,应用程序读取日期展示日期时, 转换成用户的时区展示 例如,stock ...
- Redhat hadoop2.7.2安装笔记
本次安装是在windows7环境下安装redhat虚拟机进行的,所须要的软件例如以下: VirtualBox-5.0.16-105871-Win.exe rhel-server-5.4-x86_64- ...
- Azure Mobile App - Custom Authentication
Custom Authentication: 1. For OLD Mobile Service - https://azure.microsoft.com/en-us/documentation/a ...
- IDA断点和搜索
一.断点 调试很重要一点是下断点,看看IDA提供的功能,本来已经和WinDbg一样强了. 官方文档的变化 Edit breakpoint Action name: BreakpointEdit Con ...
- c# CacheManager 缓存管理
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...