题目描述 Description

给你N个数,有两种操作:

1:给区间[a,b]的所有数增加X

2:询问区间[a,b]的数的和。

输入描述 Input Description

第一行一个正整数n,接下来n行n个整数,

再接下来一个正整数Q,每行表示操作的个数,

如果第一个数是1,后接3个正整数,

表示在区间[a,b]内每个数增加X,如果是2,

表示操作2询问区间[a,b]的和是多少。

pascal选手请不要使用readln读入

输出描述 Output Description

对于每个询问输出一行一个答案

样例输入 Sample Input

3

1

2

3

2

1 2 3 2

2 2 3

样例输出 Sample Output

9

数据范围及提示 Data Size & Hint

数据范围

1<=n<=200000

1<=q<=200000

 
树状数组40分(剩下超时):
 #include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std; int n,m;
int f[]; int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-f;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} int lowbit(int x)
{
return x&(-x);
} void update(int x,int num)
{
while(x<=n)
{
f[x]+=num;
x+=lowbit(x);
}
} int sum(int x)
{
int sum=;
while(x>)
{
sum+=f[x];
x-=lowbit(x);
}
return sum;
} int main()
{
n=read();
for(int i=;i<=n;i++)
update(i,read());
m=read();
for(int i=;i<=m;i++)
{
int t=read(),x,y,z;
if(t==)
{
x=read();y=read();z=read();
for(int j=x;j<=y;j++)
update(j,z);
}
if(t==)
{
x=read();y=read();
printf("%d\n",sum(y)-sum(x-));
}
}
return ;
}

线段树:

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; struct node
{
int left,right,flag;
long long sum;
}tree[]; int n,q;
int a[]; int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-f;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
} void build(int node,int left,int right)
{
tree[node].left=left;tree[node].right=right;
if(left==right)
{
tree[node].sum=a[left];
return;
}
int mid=(left+right)>>;
build(node<<,left,mid);
build(node<<|,mid+,right);
tree[node].sum=tree[node<<].sum+tree[node<<|].sum;
} void pushdown(int node)
{
int x=tree[node].right-tree[node].left+;
tree[node<<].flag+=tree[node].flag;
tree[node<<|].flag+=tree[node].flag;
tree[node<<].sum+=(x-(x>>))*tree[node].flag;
tree[node<<|].sum+=(x>>)*tree[node].flag;
tree[node].flag=;
} void update(int node,int left,int right,int x)
{
int mid=(tree[node].left+tree[node].right)>>;
tree[node].sum+=(right-left+)*x;
if(tree[node].left==left&&tree[node].right==right)
{
tree[node].flag+=x;
return;
}
if(tree[node].left==tree[node].right) return;
if(tree[node].flag>) pushdown(node);
if(right<=mid) update(node<<,left,right,x);
else if(left>mid) update(node<<|,left,right,x);
else
{
update(node<<,left,mid,x);
update(node<<|,mid+,right,x);
}
tree[node].sum=tree[node<<].sum+tree[node<<|].sum;
} long long query(int node,int left,int right)
{
int mid=(tree[node].left+tree[node].right)>>;
if(tree[node].left==left&&tree[node].right==right)
return tree[node].sum;
if(tree[node].flag>) pushdown(node);
if(right<=mid)
return query(node<<,left,right);
else if(left>mid)
return query(node<<|,left,right);
else
return query(node<<,left,mid)+query(node<<|,mid+,right);
} int main()
{
n=read();
for(int i=;i<=n;i++)
a[i]=read();
build(,,n);
q=read();
for(int i=;i<=q;i++)
{
int t=read(),a=read(),b=read(),x;
if(t==)
{
x=read();
update(,a,b,x);
}
if(t==)
{
cout<<query(,a,b)<<endl;
}
}
return ;
}

Codevs1082 线段树练习 3的更多相关文章

  1. 线段树[To be continued]

    目录 数据结构--线段树 一.定义 二.性质 三.基本操作 0.结构体 1.建树 2.单点查询 3.单点修改 4.区间修改 5.区间查询 四.题目 单点修改.区域查询模板 五.鸣谢 学姐的Blog 百 ...

  2. bzoj3932--可持久化线段树

    题目大意: 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si,Ei,Pi)描述,(Si,Ei,Pi)表示任务从第Si秒开始,在第 ...

  3. codevs 1082 线段树练习 3(区间维护)

    codevs 1082 线段树练习 3  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master 题目描述 Description 给你N个数,有两种操作: 1:给区 ...

  4. codevs 1576 最长上升子序列的线段树优化

    题目:codevs 1576 最长严格上升子序列 链接:http://codevs.cn/problem/1576/ 优化的地方是 1到i-1 中最大的 f[j]值,并且A[j]<A[i] .根 ...

  5. codevs 1080 线段树点修改

    先来介绍一下线段树. 线段树是一个把线段,或者说一个区间储存在二叉树中.如图所示的就是一棵线段树,它维护一个区间的和. 蓝色数字的是线段树的节点在数组中的位置,它表示的区间已经在图上标出,它的值就是这 ...

  6. codevs 1082 线段树区间求和

    codevs 1082 线段树练习3 链接:http://codevs.cn/problem/1082/ sumv是维护求和的线段树,addv是标记这歌节点所在区间还需要加上的值. 我的线段树写法在运 ...

  7. PYOJ 44. 【HNSDFZ2016 #6】可持久化线段树

    #44. [HNSDFZ2016 #6]可持久化线段树 统计 描述 提交 自定义测试 题目描述 现有一序列 AA.您需要写一棵可持久化线段树,以实现如下操作: A v p x:对于版本v的序列,给 A ...

  8. CF719E(线段树+矩阵快速幂)

    题意:给你一个数列a,a[i]表示斐波那契数列的下标为a[i],求区间对应斐波那契数列数字的和,还要求能够维护对区间内所有下标加d的操作 分析:线段树 线段树的每个节点表示(f[i],f[i-1])这 ...

  9. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

随机推荐

  1. windows 查看端口占用(转)

    开始--运行--cmd 进入命令提示符 输入netstat -ano 即可看到所有连接的PID 之后在任务管理器中找到这个PID所对应的程序如果任务管理器中没有PID这一项,可以在任务管理器中选&qu ...

  2. JavaScript读取文本,并渲染在html

    html <pre id="myText" style="word-wrap: break-word; white-space: pre-wrap; white-s ...

  3. 优化MyEclipse编译速度慢的问题

    转载大神的 https://www.cnblogs.com/luxd/p/5999217.html

  4. jQuery 数字滚动插件

    这几天闲来没事写的,有不对的地方还请多多指点 CSS: ; padding:0 2px;} .digital-beating i {;; background:url(../images/icon_0 ...

  5. (转)Linux下select, poll和epoll IO模型的详解

    Linux下select, poll和epoll IO模型的详解 原文:http://blog.csdn.net/tianmohust/article/details/6677985 一).Epoll ...

  6. Hadoop体系结构

    在前面的博文中,我已经介绍过Hadoop的基本概念了(见博文初识Hadoop),今天来介绍一下Hadoop的体系结构. Hadoop的两大核心是HDFS和MapReduce,而整个Hadoop的体系结 ...

  7. 事务的隔离级别和mysql事务隔离级别修改

    A事务做了操作 没有提交 对B事务来说 就等于没做 获取的都是之前的数据 但是 在A事务中查询的话 查到的都是操作之后的数据 没有提交的数据只有自己看得到,并没有update到数据库. 查看InnoD ...

  8. Swing编程概述

    Swing作为AWT组件的“强化版”,它的产生主要是为了克服AWT构建的GUI,无法在所有平台都通用的问题.允许编程人员跨平台时指定统一的GUI显示风格也是Swing的最大优势.Swing是AWT的补 ...

  9. GoDaddy网站程序根目录 网站文件上传到虚拟主机哪个目录

    用的linux虚拟主机,网站根目录为public_html,(window主机的目录为httpdocs)我们需要把本地做好的网站上传到此目录下 cPanel控制面板 - 文件管理器 - public_ ...

  10. Android商城开发系列(三)——使用Fragment+RadioButton实现商城底部导航栏

    在商城第一篇的开篇当中,我们看到商城的效果图里面有一个底部导航栏效果,如下图所示: 今天我们就来实现商城底部导航栏,最终效果图如下所示:   那么这种效果是如何实现,实现的方式有很多种,最常见的就是使 ...