A basic requirement is that the function should provide a uniform distribution of hash values. A non-uniform distribution increases the number of collisions and the cost of resolving them.

A critical statistic for a hash table is called the load factor. This is simply the number of entries divided by the number of buckets, that is, n/k where n is the number of entries and k is the number of buckets.

hash不同的类型有不同的方法,性能各不一样。hash共有的问题就是碰撞,Collision resolution处理碰撞(冲突的方式)有:

1. 开放寻址法(open addressing):\(hash_i=(hash(key)+d_i) \,\bmod\, m, i=1,2...k\,(k \le m-1)\),其中hash(key)为散列函数,m为散列表长,d_i为增量序列,i为已发生碰撞的次数。增量序列可有下列取法:
d_i=1,2,3...(m-1)称为 线性探测;即 d_i=i ,或者为其他线性函数。相当于逐个探测存放地址的表,直到查找到一个空单元,把散列地址存放在该空单元。
\(d_i=\pm 1^2, \pm 2^2,\pm 3^2...\pm k^2 (k \le m/2)\)称为 平方探测。相对线性探测,相当于发生碰撞时探测间隔 d_i=i^2 个单元的位置是否为空,如果为空,将地址存放进去。
d_i=伪随机数序列,称为 伪随机探测。

Well-known probe sequences include:

  • Linear probing, in which the interval between probes is fixed (usually 1)
  • Quadratic probing, in which the interval between probes is increased by adding the successive outputs of a quadratic polynomial to the starting value given by the original hash computation
  • Double hashing, in which the interval between probes is computed by another hash function

A drawback of all these open addressing schemes is that the number of stored entries cannot exceed the number of slots in the bucket array. Open addressing schemes also put more stringent requirements on the hash function: besides distributing the keys more uniformly over the buckets, the function must also minimize the clustering of hash values that are consecutive in the probe order.

Open addressing only saves memory if the entries are small (less than four times the size of a pointer) and the load factor is not too small. If the load factor is close to zero (that is, there are far more buckets than stored entries), open addressing is wasteful even if each entry is just two words.

Generally speaking, open addressing is better used for hash tables with small records that can be stored within the table (internal storage) and fit in a cache line. They are particularly suitable for elements of one word or less. If the table is expected to have a high load factor, the records are large, or the data is variable-sized, chained hash tables often perform as well or better.

这个性能可以做到很好,因为是连续数组,不需要重新开内存。

2. 单独链表法Separate chaining:将散列到同一个存储位置的所有元素保存在一个链表中。实现时,一种策略是散列表同一位置的所有碰撞结果都是用栈存放的,新元素被插入到表的前端还是后端完全取决于怎样方便。

Chained hash tables with linked lists are popular because they require only basic data structures with simple algorithms, and can use simple hash functions that are unsuitable for other methods.

Chained hash tables also inherit the disadvantages of linked lists. When storing small keys and values, the space overhead of the next pointer in each entry record can be significant. An additional disadvantage is that traversing a linked list has poor cache performance, making the processor cache ineffective.

3. 再散列:hash_i = hash_i (key), i=1,2...k。hash_i是一些散列函数。即在上次散列计算发生碰撞时,利用该次碰撞的散列函数地址产生新的散列函数地址,直到碰撞不再发生。这种方法不易产生“聚集”(Cluster),但增加了计算时间。

 class HashTable {
public:
struct List {
int val;
List* next;
List(int val):val(val), next(NULL) {}
}; HashTable() {
table = new List*[TABLE_SIZE];
memset(table, , sizeof(List*) * TABLE_SIZE);
count = ;
} ~HashTable() {
for (int i = ; i < TABLE_SIZE; ++i) {
List* p = table[i], *tmp;
while (p) {
tmp = p->next;
delete p;
p = tmp;
}
}
delete[] table;
} void insert(int val) {
//cout << "insert " << val << endl;
count++;
int index = hash(val);
List* elem = new List(val);
elem->next = table[index];
table[index] = elem;
} void remove(int val) {
int index = hash(val);
List **p = &table[index], *tmp;
while (*p) {
if ((*p)->val == val) {
//cout << "remove " << val << endl;
count--;
tmp = (*p)->next;
delete *p;
*p = tmp;
return;
}
p = &((*p)->next);
}
} int size() const {
return count;
} void print() const {
for (int i = ; i < TABLE_SIZE; ++i) {
List* p = table[i];
cout << i << ": ";
while (p) {
cout << p->val << " ";
p = p->next;
}
cout << endl;
}
}
private:
List** table;
int count;
int hash(int val) {
return val % TABLE_SIZE;
}
enum { TABLE_SIZE = };
};

Algorithm | hash的更多相关文章

  1. [Data Structure & Algorithm] Hash那点事儿

    哈希表(Hash Table)是一种特殊的数据结构,它最大的特点就是可以快速实现查找.插入和删除.因为它独有的特点,Hash表经常被用来解决大数据问题,也因此被广大的程序员所青睐.为了能够更加灵活地使 ...

  2. [Algorithm] 使用SimHash进行海量文本去重

    在之前的两篇博文分别介绍了常用的hash方法([Data Structure & Algorithm] Hash那点事儿)以及局部敏感hash算法([Algorithm] 局部敏感哈希算法(L ...

  3. powershell中使用Get-FileHash计算文件的hash值

    今天在公司一台windows服务器上.需要对两个文件进行比对,笔者首先就想到了可以使用md5校验 但是公司服务器上又不可以随意安装软件,于是笔者想到了可以试试windows自带的powershell中 ...

  4. Hash算法:双重散列

    双重散列是线性开型寻址散列(开放寻址法)中的冲突解决技术.双重散列使用在发生冲突时将第二个散列函数应用于键的想法. 此算法使用: (hash1(key) + i * hash2(key)) % TAB ...

  5. md5 (c语言)

    /** * \file md5.h * * \brief MD5 message digest algorithm (hash function) * * Copyright (C) 2006-201 ...

  6. nodejs随记02

    Basic认证 检查报文头中Authorization字段,由认证方式和加密值构成: basic认证中,加密值为username:password,然后进行Base64编码构成; 获取username ...

  7. md5增加指定的加密规则,进行加密

    import java.io.UnsupportedEncodingException; import java.security.MessageDigest; import java.securit ...

  8. crypto加密

    /* hash.js */     var crypto = require('crypto'); module.exports = function(){      this.encode = fu ...

  9. 使用SimHash进行海量文本去重[转载]

    阅读目录 1. SimHash与传统hash函数的区别 2. SimHash算法思想 3. SimHash流程实现 4. SimHash签名距离计算 5. SimHash存储和索引 6. SimHas ...

随机推荐

  1. 笔记-python-变量作用域

    笔记-python-变量作用域 1.      python变量作用域和引用范围 1.1.    变量作用域 一般而言程序的变量并不是任何对象或在任何位置都可以访问的,访问权限决定于这个变量是在哪里赋 ...

  2. P1217 [USACO1.5]回文质数 Prime Palindromes(求100000000内的回文素数)

    P1217 [USACO1.5]回文质数 Prime Palindromes 题目描述 因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以 151 是回文质数. 写一个程序来找 ...

  3. Java多线程-join方法

    thread.Join把指定的线程加入到当前线程,可以将两个交替执行的线程合并为顺序执行的线程.比如在线程B中调用了线程A的Join()方法,直到线程A执行完毕后,才会继续执行线程B. 具体例子看链接 ...

  4. mysql 分组查询前n条数据

    今天去面试,碰到一道面试题: 有一个学生成绩表,表中有 表id.学生名.学科.分数.学生id .查询每科学习最好的两名学生的信息: 建表sql: CREATE TABLE `stuscore` ( ` ...

  5. OpenStack之虚机热迁移代码解析

    OpenStack之虚机热迁移代码解析 话说虚机迁移分为冷迁移以及热迁移,所谓热迁移用度娘的话说即是:热迁移(Live Migration,又叫动态迁移.实时迁移),即虚机保存/恢复(Save/Res ...

  6. Mybatis使用-Error attempting to get column 'type' from result set. / '255' in column '4' is outside valid range for the datatype TINYINT.

    一.遇到的问题是这样的: [RemoteTestNG] detected TestNG version 6.9.10log4j: Parsing for [root] with value=[DEBU ...

  7. redhat-2

    2016年5月16日-工作日志1 通过PXE安装RHEL7.2系统,部署satellite6.2(采用不是least-stable版本,是Satellite-6.2.0-RHEL-7-20160512 ...

  8. docker常用命令整理

    Docker常见用法整理 Docker 使用客户端-服务器 (C/S) 架构模式,使用远程API来管理和创建Docker容器. Docker 容器通过 Docker 镜像来创建.容器与镜像的关系类似于 ...

  9. quagga源码学习--BGP协议的初始化

    quagga支持BGP-4,BGP-4+协议,支持多协议(mpls,isis,ospf等等)以及单播,组播路由的导入和分发. 具体的协议,这里就不附录了,网络上有很多资料,或者RFC. 协议源码的学习 ...

  10. poj1386 字符串类型的一笔画问题 欧拉回路

    Play on Words Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10685   Accepted: 3625 De ...