SPOJ 20713 DIVCNT2 - Counting Divisors (square)
DIVCNT2 - Counting Divisors (square)
Let \sigma_0(n)σ0(n) be the number of positive divisors of nn.
For example, \sigma_0(1) = 1σ0(1)=1, \sigma_0(2) = 2σ0(2)=2 and \sigma_0(6) = 4σ0(6)=4.
LetS_2(n) = \sum _{i=1}^n \sigma_0(i^2).S2(n)=i=1∑nσ0(i2).
Given NN, find S_2(N)S2(N).
Input
First line contains TT (1 \le T \le 100001≤T≤10000), the number of test cases.
Each of the next TT lines contains a single integer NN. (1 \le N \le 10^{12}1≤N≤1012)
Output
For each number NN, output a single line containing S_2(N)S2(N).
Example
Input
- 5
1
2
3
10
100
Output
- 1
4
7
48
1194
Explanation for Input
- S_2(3) = \sigma_0(1^2) + \sigma_0(2^2) + \sigma_0(3^2) = 1 + 3 + 3 = 7S2(3)=σ0(12)+σ0(22)+σ0(32)=1+3+3=7
Information
There are 6 Input files.
- Input #1: 1 \le N \le 100001≤N≤10000, TL = 1s.
- Input #2: 1 \le T \le 800,\ 1 \le N \le 10^{8}1≤T≤800, 1≤N≤108, TL = 20s.
- Input #3: 1 \le T \le 200,\ 1 \le N \le 10^{9}1≤T≤200, 1≤N≤109, TL = 20s.
- Input #4: 1 \le T \le 40,\ 1 \le N \le 10^{10}1≤T≤40, 1≤N≤1010, TL = 20s.
- Input #5: 1 \le T \le 10,\ 1 \le N \le 10^{11}1≤T≤10, 1≤N≤1011, TL = 20s.
- Input #6: T = 1,\ 1 \le N \le 10^{12}T=1, 1≤N≤1012, TL = 20s.
My C++ solution runs in 5.3 sec. (total time)
Source Limit is 6 KB.
很迷的函数题。
如何求 d(i^2)?
d(i^2)= (2*a1+1)(2*a2+1)(2*a3+1)...(2*ak+1)
我们考虑一下选哪些质因子的集合,上式
=Σ2^|S| *π a[i] ,i属于S
=Σ(p|i) 2^w(p)。
其中w(x)为x的质因子数。
然后发现2^w(x)=Σ(i|x) μ^2(i)
所以ANS= Σμ^2(i) *Σd(j) ,其中1<=i<=n,1<=j<=(n/i)。
- #include<bits/stdc++.h>
- #define ll long long
- using namespace std;
- int zs[10000005],t=0,T,sq[50000005];
- int miu[50000005],low[50000005],maxn;
- bool v[50000005];
- ll d[50000005],n;
- inline void init(){
- miu[1]=1,d[1]=1,low[1]=1;
- for(int i=2;i<=maxn;i++){
- if(!v[i]) zs[++t]=i,miu[i]=-1,d[i]=2,low[i]=i;
- for(int j=1,u;j<=t&&(u=zs[j]*i)<=maxn;j++){
- v[u]=1;
- if(!(i%zs[j])){
- low[u]=low[i]*zs[j];
- if(low[i]==i) d[u]=d[i]+1;
- else d[u]=d[low[u]]*d[i/low[i]];
- break;
- }
- low[u]=zs[j];
- d[u]=d[i]<<1;
- miu[u]=-miu[i];
- }
- }
- for(int i=1;i<=maxn;i++) d[i]+=d[i-1];
- for(int i=1;i<=maxn;i++) sq[i]=sq[i-1]+miu[i]*miu[i];
- }
- inline ll getsq(ll x){
- if(x<=maxn) return sq[x];
- ll an=0;
- for(int i=1;i*(ll)i<=x;i++){
- an+=miu[i]*(x/(i*(ll)i));
- }
- return an;
- }
- inline ll getd(ll x){
- if(x<=maxn) return d[x];
- ll an=0;
- for(ll i=1,j,now;i<=x;i=j+1){
- now=x/i,j=x/now;
- an+=(j-i+1)*now;
- }
- return an;
- }
- inline ll query(ll x){
- ll an=0;
- for(ll i=1,j,now;i<=x;i=j+1){
- now=x/i,j=x/now;
- an+=(getsq(j)-getsq(i-1))*getd(now);
- }
- return an;
- }
- int main(){
- scanf("%d",&T);
- if(T>800) maxn=1000000;
- else maxn=50000000;
- init();
- while(T--){
- scanf("%lld",&n);
- printf("%lld\n",query(n));
- }
- return 0;
- }
SPOJ 20713 DIVCNT2 - Counting Divisors (square)的更多相关文章
- [SPOJ] DIVCNT2 - Counting Divisors (square) (平方的约数个数前缀和 容斥 卡常)
题目 vjudge URL:Counting Divisors (square) Let σ0(n)\sigma_0(n)σ0(n) be the number of positive diviso ...
- SPOJ : DIVCNT2 - Counting Divisors (square)
设 \[f(n)=\sum_{d|n}\mu^2(d)\] 则 \[\begin{eqnarray*}\sigma_0(n^2)&=&\sum_{d|n}f(d)\\ans&= ...
- SP20173 DIVCNT2 - Counting Divisors (square)
Refer 主要思路参考了 Command_block 的题解. Description 给定 \(n\)(\(n\le 10^{10}\)),求 \[\sum_{i=1}^n\sigma_0(i^2 ...
- DIVCNT2&&3 - Counting Divisors
DIVCNT2 - Counting Divisors (square) DIVCNT3 - Counting Divisors (cube) 杜教筛 [学习笔记]杜教筛 (其实不算是杜教筛,类似杜教 ...
- SPOJDIVCNT2: Counting Divisors(莫比乌斯反演)
http://acm.tzc.edu.cn/acmhome/vProblemList.do?method=problemdetail&oj=SPOJ&pid=DIVCNT2 给出n求 ...
- HDU 6069 Counting Divisors
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors(求因子的个数)
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- hdu 6069 Counting Divisors 筛法
Counting Divisors Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Oth ...
- 2017 Multi-University Training Contest - Team 4 hdu6069 Counting Divisors
地址:http://acm.split.hdu.edu.cn/showproblem.php?pid=6069 题目: Counting Divisors Time Limit: 10000/5000 ...
随机推荐
- android shape.xml 文件使用
设置背景色可以通过在res/drawable里定义一个xml,如下: <?xml version="1.0" encoding="utf-8"?> ...
- loj2042 「CQOI2016」不同的最小割
分治+最小割 看到题解的第一句话是这个就秒懂了,然后乱七八糟的错误.越界.RE-- #include <algorithm> #include <iostream> #incl ...
- requireJS入门学习
前言 最近网上.群里各种随便看,随便学.暑期实习还没找到,昨天开题过了,好好学习吧.最近一直看到前端的ADM,CMD规范,然后网上各种找资料看,看了好几个牛人的博客,写的很好,然后自我感觉了解了点,介 ...
- 47.关于gradle的解疑
Short Answer Gradle is a build system. Long Answer Before Android Studio you were using Eclipse for ...
- Java的移位运算符
1.左移运算符:<< 丢弃左边指定位数,右边补0. 注意: 当int类型进行左移操作时,左移位数大于等于32位操作时,会先求余(%)后再进行左移操作.也就是说左移32位相当于不进行移位操作 ...
- ALPHA(五)
目录 组员情况 组员1(组长):胡绪佩 组员2:胡青元 组员3:庄卉 组员4:家灿 组员5:凯琳 组员6:翟丹丹 组员7:何家伟 组员8:政演 组员9:黄鸿杰 组员10:刘一好 组员11:何宇恒 展示 ...
- 习题:Wormhole(思路题)
tyvj1763 描述 一维的世界就是一个数轴.这个世界的狭小我们几乎无法想象.在这个数轴上,有N个点.从左到右依次标记为点1到N.第i个点的坐标为Xi.经过漫长时间的物理变化和化学变化,这个一维世界 ...
- [HDU2829] Lawrence [四边形不等式优化dp]
题面: 传送门 思路: 依然是一道很明显的区间dp 我们设$dp\left[i\right]\left[j\right]$表示前$j$个节点分成了$i$块的最小花费,$w\left[i\right]\ ...
- Prime Gift(prime)
Prime Gift(prime) 题目描述 Jyt有nn个质数,分别为p1,p2,p3-,pnp1,p2,p3-,pn. 她认为一个数xx是优秀的,当且仅当xx的所有质因子都在这nn个质数中. 她想 ...
- Partition Refinement
今天613问我怎么做DFA最小化..呃..这个我怎么可能会做呢.. 于是我就去学习了一点姿势,先把我Partition Refinement Data Structure的代码发上来好了.. 我挺菜的 ...