【解析】Burnside引理+背包dp+乘法逆元

[Analysis]

这道题卡了好久,就是没想懂置换跟着色是不一样的。



依据burnside引理。在一个置换群作用下不等价类的个数为每一个置换作用下不动点个数的平均数。

在这道题中:

置换的对象 ——
每一个状态,标号为1—N(这里的N不是题目的N,而是状态的个数)。

不动点 ——
前后染色状态全然同样的状态的个数。

所以就是求经过变换后前后状态全然同样的个数。

[Sum]

Burnside引理几个注意的地方

[1]什么是Burnside引理?

[2]置换的对象是什么?

[3]不动点意味着什么?

[4]着色变换不是置换。

[Code]

<span style="font-size:18px;">/**************************************************************
Problem: 1004
User: y20070316
Language: C++
Result: Accepted
Time:328 ms
Memory:2164 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; const int N=70; int Sr,Sb,Sg,n,m,p; //Basic
int map[N][N],d[N],v[N],cnt; //Substitution
int f[N][N][N]; //Damatic Programming
int res; //Answer inline int read(void)
{
int s=0,f=1; char c=getchar();
for (;c<'0'||c>'9';c=getchar());
for (;'0'<=c&&c<='9';c=getchar()) s=s*10+c-'0';
return s*f;
} void init(void)
{
Sr=read(),Sb=read(),Sg=read(),n=Sr+Sb+Sg;
m=read(),p=read();
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++) map[i][j]=read();
m++; for (int j=1;j<=n;j++) map[m][j]=j;
} void work(void)
{
for (int i=1;i<=m;i++)
{
cnt=0; memset(v,0,sizeof v);
memset(d,0,sizeof d); for (int j=1;j<=n;j++)
if (!v[j])
{
v[j]=d[++cnt]=1;
for (int k=map[i][j];k^j;k=map[i][k])
v[k]=1,d[cnt]++;
} memset(f,0,sizeof f); f[0][0][0]=1;
for (int i=1;i<=cnt;i++)
for (int j=Sr;j>=0;j--)
for (int k=Sb;k>=0;k--)
for (int q=Sg;q>=0;q--)
{
f[j][k][q]=0;
if (j>=d[i]) f[j][k][q]=(f[j][k][q]+f[j-d[i]][k][q])%p;
if (k>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k-d[i]][q])%p;
if (q>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k][q-d[i]])%p;
}
res=(res+f[Sr][Sb][Sg])%p;
}
} int mi(int i,int j)
{
if (!j) return 1;
int s=mi(i,j>>1);
s=s*s%p;
if (j&1) s=s*i%p;
return s;
} void print(void)
{
int inv=mi(m,p-2);
res=res*inv%p;
printf("%d\n",(res+p)%p);
} int main(void)
{
init();
work();
print(); return 0;
}</span>

【BZOJ】1003 Cards的更多相关文章

  1. 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...

  2. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  3. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  4. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  5. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  6. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  7. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  8. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  9. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

随机推荐

  1. 用python获取服务器硬件信息[转]

    #!/usr/bin/env python # -*- coding: utf-8 -*- import rlcompleter, readline readline.parse_and_bind(' ...

  2. C#Json转Xml格式数据的方法

    第一种方法 string Xml = "在这里写Json字符串"; XmlDictionaryReader reader = JsonReaderWriterFactory.Cre ...

  3. 多线程设计模式 - Future模式

    Future模式是多线程开发中非常常见的一种设计模式,它的核心思想是异步调用.这类似我们日常生活中的在线购物流程,带在购物网看着一件商品时可以提交表单,当订单完成后就可以在家里等待商品送货上门.或者说 ...

  4. hdu 4995(离散化下标+模拟)

    Revenge of kNN Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  5. LeetCode OJ-- Maximum Depth of Binary Tree

    https://oj.leetcode.com/problems/maximum-depth-of-binary-tree/ 求二叉树的最大深度 深度优先搜索 /** * Definition for ...

  6. JMeter进行http接口测试

    Jmter工具设计之初是用于做性能测试的,它在实现对各种接口的调用方面已经做的比较成熟,因此,本次直接使用Jmeter工具来完成对Http接口的测试. 一.开发接口测试案例的整体方案: 第一步:我们要 ...

  7. POJ 2406 Power Strings KMP算法之next数组的应用

    题意:给一个字符串,求该串最多由多少个相同的子串相接而成. 思路:只要做过poj 1961之后,这道题就很简单了.poj 1961 详细题解传送门. 假设字符串的长度为len,如果 len % (le ...

  8. bzoj 2889: Tree Conundrum

    2889: Tree Conundrum Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 61  Solved: 37[Submit][Status][ ...

  9. 2016北京集训测试赛(十六)Problem A: 任务安排

    Solution 这道题告诉我们, 不能看着数据范围来推测正解的时间复杂度. 事实证明, 只要常数足够小, \(5 \times 10^6\)也是可以跑\(O(n \log n)\)算法的!!! 这道 ...

  10. 【转】彻底弄懂Java中的equals()方法以及与"=="的区别

    彻底弄懂Java中的equals()方法以及与"=="的区别 一.问题描述:今天在用Java实现需求的时候,发现equals()和“==”的功能傻傻分不清,导致结果产生巨大的偏差. ...