【解析】Burnside引理+背包dp+乘法逆元

[Analysis]

这道题卡了好久,就是没想懂置换跟着色是不一样的。



依据burnside引理。在一个置换群作用下不等价类的个数为每一个置换作用下不动点个数的平均数。

在这道题中:

置换的对象 ——
每一个状态,标号为1—N(这里的N不是题目的N,而是状态的个数)。

不动点 ——
前后染色状态全然同样的状态的个数。

所以就是求经过变换后前后状态全然同样的个数。

[Sum]

Burnside引理几个注意的地方

[1]什么是Burnside引理?

[2]置换的对象是什么?

[3]不动点意味着什么?

[4]着色变换不是置换。

[Code]

<span style="font-size:18px;">/**************************************************************
Problem: 1004
User: y20070316
Language: C++
Result: Accepted
Time:328 ms
Memory:2164 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; const int N=70; int Sr,Sb,Sg,n,m,p; //Basic
int map[N][N],d[N],v[N],cnt; //Substitution
int f[N][N][N]; //Damatic Programming
int res; //Answer inline int read(void)
{
int s=0,f=1; char c=getchar();
for (;c<'0'||c>'9';c=getchar());
for (;'0'<=c&&c<='9';c=getchar()) s=s*10+c-'0';
return s*f;
} void init(void)
{
Sr=read(),Sb=read(),Sg=read(),n=Sr+Sb+Sg;
m=read(),p=read();
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++) map[i][j]=read();
m++; for (int j=1;j<=n;j++) map[m][j]=j;
} void work(void)
{
for (int i=1;i<=m;i++)
{
cnt=0; memset(v,0,sizeof v);
memset(d,0,sizeof d); for (int j=1;j<=n;j++)
if (!v[j])
{
v[j]=d[++cnt]=1;
for (int k=map[i][j];k^j;k=map[i][k])
v[k]=1,d[cnt]++;
} memset(f,0,sizeof f); f[0][0][0]=1;
for (int i=1;i<=cnt;i++)
for (int j=Sr;j>=0;j--)
for (int k=Sb;k>=0;k--)
for (int q=Sg;q>=0;q--)
{
f[j][k][q]=0;
if (j>=d[i]) f[j][k][q]=(f[j][k][q]+f[j-d[i]][k][q])%p;
if (k>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k-d[i]][q])%p;
if (q>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k][q-d[i]])%p;
}
res=(res+f[Sr][Sb][Sg])%p;
}
} int mi(int i,int j)
{
if (!j) return 1;
int s=mi(i,j>>1);
s=s*s%p;
if (j&1) s=s*i%p;
return s;
} void print(void)
{
int inv=mi(m,p-2);
res=res*inv%p;
printf("%d\n",(res+p)%p);
} int main(void)
{
init();
work();
print(); return 0;
}</span>

【BZOJ】1003 Cards的更多相关文章

  1. 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...

  2. 【BZOJ】3052: [wc2013]糖果公园

    http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...

  3. 【BZOJ】3319: 黑白树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...

  4. 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)

    http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...

  5. 【BZOJ】1013: [JSOI2008]球形空间产生器sphere

    [BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...

  6. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  7. 【BZOJ1004】[HNOI2008]Cards Burnside引理

    [BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...

  8. 【BZOJ】【3083】遥远的国度

    树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...

  9. 【BZOJ】【2434】【NOI2011】阿狸的打字机

    AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...

随机推荐

  1. 用python获取服务器硬件信息[转]

    #!/usr/bin/env python # -*- coding: utf-8 -*- import rlcompleter, readline readline.parse_and_bind(' ...

  2. 354. Russian Doll Envelopes

    You have a number of envelopes with widths and heights given as a pair of integers (w, h). One envel ...

  3. interview fb2

    2014.7.8fb #include <iostream> using namespace std; struct TreeNode{ int val; TreeNode *left; ...

  4. springBoot 数组增加工具类包

    1.pom中加入依赖 <!--数组工具类 start--> <dependency> <groupId>org.apache.commons</groupId ...

  5. 如何将Windows8系统的磁盘格式(GPT格式)转换成Windows 7系统的磁盘格式(MBR格式)

    知识点分析:随机预装Win8的电脑,磁盘为GPT格式的,如果需要安装Win7等早期版本系统,需要转换为MBR格式的,使用Diskpart命令即可完成转换.操作步骤: 注意:转换磁盘格式需要清空磁盘中的 ...

  6. SecureCRT的帮助文档

    [Help]->[Help Topics] Ubuntu:file:///usr/share/doc/scrt/SecureCRTHelp/SecureCRT.htm

  7. 怎么把一个整数转化为3个十六进制字节 delphi

    如何把一个整数转化为3个十六进制字节 delphi比如把整数149259(都是6位数据整型数) 转换为十六进制为2470B然后再分开为三个字节02 47 0B,求实现代码示例var ID: Integ ...

  8. Scut游戏服务器引擎6.1.5.6发布,直接可运行,支持热更新

    1. 增加exe版(console),web版本(IIS)的游戏服宿主程序 2. 增加Model支持脚本化,实现不停服更新 3. 增加Language支持脚本化 4. 修改Sns与Pay Center ...

  9. 人工神经网络--ANN

    神经网络是一门重要的机器学习技术.它是目前最为火热的研究方向--深度学习的基础.学习神经网络不仅可以让你掌握一门强大的机器学习方法,同时也可以更好地帮助你理解深度学习技术. 本文以一种简单的,循序的方 ...

  10. Android之——流量管理程序演示样例

    转载请注明出处:http://blog.csdn.net/l1028386804/article/details/47680811 眼下.市面上有非常多管理手机流量的软件,能够让用户实时获取到自己手机 ...