【BZOJ】1003 Cards
【解析】Burnside引理+背包dp+乘法逆元
[Analysis]
这道题卡了好久,就是没想懂置换跟着色是不一样的。
依据burnside引理。在一个置换群作用下不等价类的个数为每一个置换作用下不动点个数的平均数。
在这道题中:
置换的对象 ——
每一个状态,标号为1—N(这里的N不是题目的N,而是状态的个数)。
不动点 ——
前后染色状态全然同样的状态的个数。
所以就是求经过变换后前后状态全然同样的个数。
[Sum]
Burnside引理几个注意的地方
[1]什么是Burnside引理?
[2]置换的对象是什么?
[3]不动点意味着什么?
[4]着色变换不是置换。
[Code]
<span style="font-size:18px;">/**************************************************************
Problem: 1004
User: y20070316
Language: C++
Result: Accepted
Time:328 ms
Memory:2164 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <cstdlib>
using namespace std; const int N=70; int Sr,Sb,Sg,n,m,p; //Basic
int map[N][N],d[N],v[N],cnt; //Substitution
int f[N][N][N]; //Damatic Programming
int res; //Answer inline int read(void)
{
int s=0,f=1; char c=getchar();
for (;c<'0'||c>'9';c=getchar());
for (;'0'<=c&&c<='9';c=getchar()) s=s*10+c-'0';
return s*f;
} void init(void)
{
Sr=read(),Sb=read(),Sg=read(),n=Sr+Sb+Sg;
m=read(),p=read();
for (int i=1;i<=m;i++)
for (int j=1;j<=n;j++) map[i][j]=read();
m++; for (int j=1;j<=n;j++) map[m][j]=j;
} void work(void)
{
for (int i=1;i<=m;i++)
{
cnt=0; memset(v,0,sizeof v);
memset(d,0,sizeof d); for (int j=1;j<=n;j++)
if (!v[j])
{
v[j]=d[++cnt]=1;
for (int k=map[i][j];k^j;k=map[i][k])
v[k]=1,d[cnt]++;
} memset(f,0,sizeof f); f[0][0][0]=1;
for (int i=1;i<=cnt;i++)
for (int j=Sr;j>=0;j--)
for (int k=Sb;k>=0;k--)
for (int q=Sg;q>=0;q--)
{
f[j][k][q]=0;
if (j>=d[i]) f[j][k][q]=(f[j][k][q]+f[j-d[i]][k][q])%p;
if (k>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k-d[i]][q])%p;
if (q>=d[i]) f[j][k][q]=(f[j][k][q]+f[j][k][q-d[i]])%p;
}
res=(res+f[Sr][Sb][Sg])%p;
}
} int mi(int i,int j)
{
if (!j) return 1;
int s=mi(i,j>>1);
s=s*s%p;
if (j&1) s=s*i%p;
return s;
} void print(void)
{
int inv=mi(m,p-2);
res=res*inv%p;
printf("%d\n",(res+p)%p);
} int main(void)
{
init();
work();
print(); return 0;
}</span>
【BZOJ】1003 Cards的更多相关文章
- 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)
http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...
- 【BZOJ】3052: [wc2013]糖果公园
http://www.lydsy.com/JudgeOnline/problem.php?id=3052 题意:n个带颜色的点(m种),q次询问,每次询问x到y的路径上sum{w[次数]*v[颜色]} ...
- 【BZOJ】3319: 黑白树
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 题意:给一棵n节点的树(n<=1e6),m个操作(m<=1e6),每次操作有两种: ...
- 【BZOJ】3319: 黑白树(并查集+特殊的技巧/-树链剖分+线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3319 以为是模板题就复习了下hld............................. 然后n ...
- 【BZOJ】1013: [JSOI2008]球形空间产生器sphere
[BZOJ]1013: [JSOI2008]球形空间产生器sphere 题意:给n+1个n维的点的坐标,要你求出一个到这n+1个点距离相等的点的坐标: 思路:高斯消元即第i个点和第i+1个点处理出一个 ...
- 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)
Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...
- 【BZOJ1004】[HNOI2008]Cards Burnside引理
[BZOJ1004][HNOI2008]Cards 题意:把$n$张牌染成$a,b,c$,3种颜色.其中颜色为$a,b,c$的牌的数量分别为$sa,sb,sc$.并且给出$m$个置换,保证这$m$个置 ...
- 【BZOJ】【3083】遥远的国度
树链剖分/dfs序 其实过了[BZOJ][4034][HAOI2015]T2以后就好搞了…… 链修改+子树查询+换根 其实静态树的换根直接树链剖分就可以搞了…… 因为其实只有一样变了:子树 如果roo ...
- 【BZOJ】【2434】【NOI2011】阿狸的打字机
AC自动机+DFS序+BIT 好题啊……orz PoPoQQQ 大爷 一道相似的题目:[BZOJ][3172][TJOI2013]单词 那道题也是在fail树上数有多少个点,只不过这题是在x的fail ...
随机推荐
- [转]iOS8 自动调整UITableView和UICollectionView布局
转自:http://www.cocoachina.com/industry/20140825/9450.html (via:玉令天下的Blog) 本文讲述了UITableView.UICollec ...
- Day 30 process&thread_2
进程和线程_2 1.继承类创建线程 import threading,time class Mythread(threading.Thread): #建立类,继承threading.Thread de ...
- centos 7 安装golang1.12.5
本文主要介绍服务器端环境配置,开发环境是window的话可以参考 https://www.cnblogs.com/nickchou/p/10765743.html 方式一.用yum安装 1.用yum指 ...
- 洛谷 P1328 生活大爆炸版石头剪刀布【模拟/环/周期】
题目描述 石头剪刀布是常见的猜拳游戏:石头胜剪刀,剪刀胜布,布胜石头.如果两个人出拳一样,则不分胜负.在<生活大爆炸>第二季第8 集中出现了一种石头剪刀布的升级版游戏. 升级版游戏在传统的 ...
- P1450 包裹快递 RP+14【二分】
[题目链接]:https://vijos.org/p/category/%E5%85%B6%E4%BB%96,%E4%BA%8C%E5%88%86%E6%9F%A5%E6%89%BE 描述 一个快递公 ...
- ZOJ 1232 Adventure of Super Mario (Floyd + DP)
题意:有a个村庄,编号为1到a,有b个城堡,编号为a+1到a+b.现在超级玛丽在a+b处,他的家在1处.每条路是双向的,两端地点的编号以及路的长度都已给出.路的长度和通过所需时间相等.他有一双鞋子,可 ...
- ural 1519 fomular 1 既插头DP学习笔记
直接看CDQ在2008年的论文吧. 个人认为她的论文有两个不明确的地方, 这里补充一下: 首先是轮廓的概念. 我们在进行插头DP时, 是从上往下, 从左往右逐个格子进行的, 已经处理的格子与未经处理的 ...
- ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/tmp/mysql.sock'
原因:找不到mysql.sock文件 解决方法: 1 找到mysql.sock文件位置 echo "show variables" | mysql | grep "soc ...
- 2017.2.9 开涛shiro教程-第十章-会话管理(一)
原博客地址:http://jinnianshilongnian.iteye.com/blog/2018398 根据下载的pdf学习. 第十章 会话管理(一) 10.1 会话 shiro提供的会话可以用 ...
- Spring boot Security Disable security
When I use security.basic.enabled=false to disable security on a Spring Boot project that has the fo ...