跳台阶
  • 时间限制:1秒空间限制:32768K

题目描述

一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
 
分析同样为斐波那契数列边形这样的题肯定有公式
设n级台阶,总跳法 jumps
n      jumps
1       1
2       2
3       3
4       5
5       8
猜测 fbonicc(n) = fbonicc(n-1) + fbonicc(n-2)
3        4          5
111      1111        1111(1)
21        211          211(1)
12        121         121(1)
        112         112(1)
        22          22(1)
                   111(2)
                   21(2)
                   12(2)
现在我们可以这样理解当   f(n) 比 f(n-1)少一个台阶
这一个台阶我们可以当一步跳完,也可以与前面的一步结合成一次跳两阶,So
前一种情况我们可以直接把这一步添到f(n-1)所有跳数后面,后一种情况很显然我们要向f(n - 1)借一步,也就是f(n-2)
所以得f(n) = f(n-1) + f(n-2)
 
c++代码实现
class Solution {
public:
int jumpFloor(int number) {
long long fiboncciA = 1;
long long fiboncciB = 2;
if (number == 1){
return fiboncciA;
}
if (number == 2) {
return fiboncciB;
} int i;
for (i = 3; i <= number; i++){
int tmp = fiboncciB;
fiboncciB = fiboncciA + fiboncciB;
fiboncciA = tmp;
}
return fiboncciB;
}
};

下一题

  • 时间限制:1秒空间限制:32768K
  • 题目描述
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
!!猛一看这道题有点没看懂
 
先来仔细分析一下
1:所有小矩形都竖着覆盖
2:当矩形横着覆盖时都是成对出现的
看到这里有感觉很熟悉,这不就是跳台阶问题吗?答案:是的
我们可以把题目改一下:有n个小矩形,去覆盖大矩形你可以一次用一个,也可以一次用两个,总共有多少种覆盖方法。
现在可以看懂了吧!
 
c++代码实现
代码同上
 
 

(原)剑指offer跳台阶和矩形覆盖的更多相关文章

  1. 剑指Offer - 九度1390 - 矩形覆盖

    剑指Offer - 九度1390 - 矩形覆盖2014-02-05 23:27 题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形 ...

  2. 剑指Offer 跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   解题思路: f(n)=f(n-1)+f(n-2); f(1)=1,f(2)=2;   AC代码 ...

  3. 剑指Offer——跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路分析 这个问题可以先从简单开始考虑,台阶只有1阶,只有1种跳法,台阶有2阶,有2种跳法:一种两 ...

  4. 用js刷剑指offer(跳台阶)

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 牛客网链接 思路 这一题和斐波那契数列思路完全一样. 假如青蛙从第n个 ...

  5. 剑指offer【11】- 矩形覆盖

    题目:我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 在分析前不知道是什么序列,所以先看了n=1,n=2,n=3,n= ...

  6. 剑指offer(10)矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目分析 当然也可以逆向思维 应为可以横着放或竖着放,多以f ...

  7. 【剑指Offer】10、矩形覆盖

      题目描述:   我们可以用2 X 1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2 X 1的小矩形无重叠地覆盖一个2 X n的大矩形,总共有多少种方法?   解题思路:   我们可以以2 X ...

  8. 【剑指offer】10:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: ①方法一 对于这种题没有思路怎么办?可以先从最 ...

  9. C#版 - 剑指offer 面试题9:斐波那契数列及其变形(跳台阶、矩形覆盖) 题解

    面试题9:斐波那契数列及其变形(跳台阶.矩形覆盖) 提交网址: http://www.nowcoder.com/practice/c6c7742f5ba7442aada113136ddea0c3?tp ...

随机推荐

  1. 阿里云-域名免费申请ssl证书过程

    1.运行证书服务docker docker run --entrypoint="/bin/sh" -it --name certbotsh certbot/certbot:late ...

  2. vue-quill-editor 富文本编辑器插件介绍

    Iblog项目中博文的文本编辑器采用了vue-quill-editor插件,本文将简单介绍其使用方法. 引入配置 安装模块 npm install vue-quill-editor --save in ...

  3. CF1066B Heaters

    思路: 从左向右贪心选择能覆盖当前位置的最靠右的那个heater即可,和poj radar installation类似. 实现: #include <iostream> #include ...

  4. link标签的media属性的用法

    <link rel=stylesheet" type="text/css" href="print.css" media="scree ...

  5. iOS 自适应高度,改变字体颜色

    #define kMainBoundsWidth ([UIScreen mainScreen].bounds).size.width //屏幕的宽度 #define kFont [UIFont sys ...

  6. Lucene全文检索技术学习

    ---------------------------------------------------------------------------------------------------- ...

  7. 【数据库-Azure SQL Database】如何创建事务复制将本地数据同步到 SQL Azure

    Azure SQL DB 可以被配置成为 SQL Server 事务复制的一个订阅者( subscriber ). 主要应用场景有两种: 将您的数据迁移到 Azure SQL DB, 并且没有宕机时间 ...

  8. ios UnitTest 学习笔记1

    一.运行第一个单元测试: 1.在Xcode 5中新建一个工程默认自带一个单元测试的文件夹,IDE自动生成了一个实现XCTestCase的.m文件,里面有一个失败测试(早期版本中实现的是SenTestC ...

  9. 如何用JavaScript判断前端应用运行环境(移动平台还是桌面环境)

    我们部署在某些云平台或者Web服务器上的前端应用,既可以用PC端浏览器访问,也可以用手机上的浏览器访问. 在前端应用里,有时候我们需要根据运行环境的不同做出对应处理.比如下面这段逻辑,如果判断出应用当 ...

  10. haml scss转换编写html css的前期工作

    http://www.w3cplus.com/sassguide/install.html 先下载ruby $ gem sources $ gem sources --remove https://r ...