浅谈树分治:https://www.cnblogs.com/AKMer/p/10014803.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3784

难得地看了题解,发现居然还有点分序这么个玩意儿……

对于点分治时遍历过的点的长度为\(nlogn\)的序列,我们称它为点分序。

然后这题就是树上超级钢琴,在点分序上做就行了。对于每一条边,在点分序里能与其匹配的边是一段区间。

时间复杂度:\(O(nlogn*(1+log(nlogn)))\)

空间复杂度:\(O(nlogn*log(nlogn))\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const int maxn=5e4+5; bool vis[maxn];
int n,m,mx,rt,N,tot,cnt,L,R;
int now[maxn],pre[maxn*2],son[maxn*2],val[maxn*2];
int siz[maxn],a[maxn*20],Log[maxn*20],f[20][maxn*20]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} void add(int a,int b,int c) {
pre[++tot]=now[a];
now[a]=tot,son[tot]=b,val[tot]=c;
} struct node {
int v,pos,l,r; node() {} node(int _v,int _pos,int _l,int _r) {
v=_v,pos=_pos,l=_l,r=_r;
} bool operator<(const node &a)const {
return v<a.v;
}
}; struct Heap {
int tot;
node tree[maxn*26]; void ins(node res) {
tree[++tot]=res;
int pos=tot;
while(pos>1) {
if(tree[pos>>1]<tree[pos])
swap(tree[pos>>1],tree[pos]),pos>>=1;
else break;
}
} node pop() {
node res=tree[1];
tree[1]=tree[tot--];
int pos=1,son=2;
while(son<=tot) {
if(son<tot&&tree[son]<tree[son|1])son|=1;
if(tree[pos]<tree[son])
swap(tree[son],tree[pos]),pos=son,son=pos<<1;
else break;
}
return res;
}
}T; void find_rt(int fa,int u) {
int res=0;siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)find_rt(u,v),siz[u]+=siz[v],res=max(res,siz[v]);
res=max(res,N-siz[u]);
if(res<mx)mx=res,rt=u;
} void solve(int fa,int u,int dis) {
a[++cnt]=dis;T.ins(node(a[mx]+dis,cnt,L,R)),siz[u]=1;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]&&v!=fa)solve(u,v,dis+val[p]),siz[u]+=siz[v];
} void work(int u,int size) {
N=size,mx=rt=n+1,find_rt(0,u);
u=rt,vis[u]=1,a[++cnt]=0,L=cnt,mx=cnt;
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v]) {
R=cnt,solve(u,v,val[p]);
for(int j=R+1;j<=cnt;j++)
if(a[j]>a[mx])mx=j;
}
for(int p=now[u],v=son[p];p;p=pre[p],v=son[p])
if(!vis[v])work(v,siz[v]);
} int fake(int num1,int num2) {
if(a[num1]>a[num2])return num1;
return num2;
} int query(int l,int r) {
int x=Log[r-l+1];
return fake(f[x][l],f[x][r-(1<<x)+1]);
} void make_st() {
Log[0]=-1;
for(int i=1;i<=cnt;i++)
f[0][i]=i,Log[i]=Log[i>>1]+1;
for(int i=1;i<=19;i++)
for(int j=1;j+(1<<i)-1<=cnt;j++)
f[i][j]=fake(f[i-1][j],f[i-1][j+(1<<(i-1))]);
} int main() {
n=read(),m=read();
for(int i=1;i<n;i++) {
int a=read(),b=read(),c=read();
add(a,b,c),add(b,a,c);
}work(1,n),make_st();
for(int i=1;i<=m;i++) {
node tmp=T.pop();
int pos=query(tmp.l,tmp.r);
if(pos-1>=tmp.l)
T.ins(node(a[query(tmp.l,pos-1)]+a[tmp.pos],tmp.pos,tmp.l,pos-1));
if(pos+1<=tmp.r)
T.ins(node(a[query(pos+1,tmp.r)]+a[tmp.pos],tmp.pos,pos+1,tmp.r));
printf("%d\n",tmp.v);
}
return 0;
}

BZOJ3784:树上的路径的更多相关文章

  1. BZOJ3784 : 树上的路径

    树的点分治,在分治的时候将所有点到根的距离依次放入一个数组q中. 对于一棵子树里的点,合法的路径一定是q[L]..q[R]的某个数加上自己到重心的距离. 定义五元组(v,l,m,r,w),表示当前路径 ...

  2. 2019.01.20 bzoj3784: 树上的路径(二分答案+点分治)

    传送门 点分治好题. 题意简述:给一棵带边权的树,问所有路径中前mmm大的.m≤300000m\le300000m≤300000 思路: 网上有题解写了可以通过什么点分治序转化成超级钢琴那道题的做法蒟 ...

  3. BZOJ3784树上的路径

    题目描述 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距离从大到小排序, ...

  4. 【BZOJ3784】树上的路径 点分治序+ST表

    [BZOJ3784]树上的路径 Description 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a< ...

  5. 【BZOJ-3784】树上的路径 点分治 + ST + 堆

    3784: 树上的路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 462  Solved: 153[Submit][Status][Discuss ...

  6. codevs 2756树上的路径

    题意: 2756 树上的路径  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master    题目描述 Description 给出一棵树,求出最小的k,使得,且在树 ...

  7. bzoj 3784: 树上的路径 堆维护第k大

    3784: 树上的路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 88  Solved: 27[Submit][Status][Discuss] ...

  8. 树上的路径 BZOJ 3784

    树上的路径 [问题描述] 给定一个N个结点的树,结点用正整数1..N编号.每条边有一个正整数权值.用d(a,b)表示从结点a到结点b路边上经过边的权值.其中要求a<b.将这n*(n-1)/2个距 ...

  9. Codevs 2756 树上的路径

    2756 树上的路径  时间限制: 3 s  空间限制: 128000 KB  题目等级 : 大师 Master     题目描述 Description 给出一棵树,求出最小的k,使得,且在树中存在 ...

随机推荐

  1. ReactiveCocoa入门教程——第一部分【转载】

    作为一个iOS开发者,你写的每一行代码几乎都是在响应某个事件,例如按钮的点击,收到网络消息,属性的变化(通过KVO)或者用户位置的变化(通过CoreLocation).但是这些事件都用不同的方式来处理 ...

  2. Linux kernel manpages

    https://www.linuxquestions.org/questions/linux-newbie-8/man-pages-for-kernel-functions-758389/ 在Linu ...

  3. Net中的代码规范工具及使用

    Net中的代码规范工具及使用 https://www.cnblogs.com/selimsong/p/9209254.html 上一篇文章介绍了编码标准中一些常用的工具,本篇就具体来介绍如何使用它们来 ...

  4. C打印函数printf的一种实现原理简要分析

    [0]README 0.1)本文旨在对 printf 的 某一种 实现 原理进行分析,做了解之用: 0.2) vsprintf 和 printf.c 的源码,参见 https://github.com ...

  5. 图像处理之基础---二维卷积c实现

    http://wenku.baidu.com/link?url=4RzdmvP9sdaaUbnVEW4OyBD-g67wIOiJjKFF3Le_bu7hIiBS7I6hMcDmCXrQwsHvrsPv ...

  6. KVC基本使用

    首先,创建两个类.person类和book类.如图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/ ...

  7. 自己动手写CPU之第七阶段(2)——简单算术操作指令实现过程

    将陆续上传本人写的新书<自己动手写CPU>.今天是第25篇.我尽量每周四篇 亚马逊的预售地址例如以下,欢迎大家围观呵! http://www.amazon.cn/dp/b00mqkrlg8 ...

  8. 2017-2018-1 20179209《Linux内核原理与分析》第二周作业

    本周课业主要通过分析汇编代码执行情况掌握栈的变化.本人本科时期学过intel 80X86汇编语言,所以有一定基础:在Linux中32位AT&T风格的汇编稍微熟悉就可以明白.所以我学习的重点放在 ...

  9. 【题解】P1156垃圾陷阱

    [题解]P1156 垃圾陷阱 乍看此题,我们感觉状态很多,很复杂. 遇到这类型条件比较多的\(dp\),我们不要首先考虑全部设出来,而是要看到这些状态的本质.而在这道题目中,时间和高度就是关键. 考虑 ...

  10. Android之Handler使用方法总结

    方法一:(java习惯,在android平台开发时这样是不行的,由于它违背了单线程模型) 刚刚開始接触android线程编程的时候,习惯好像java一样,试图用以下的代码解决这个问题    new T ...