BC div2补题以及 复习模除 逆元__BestCoder Round #78 (div.2)
第一题没话说 智商欠费 加老柴辅导终于过了
需要在意的是数据范围为2的63次方-1 三个数相加肯定爆了
四边形的定义 任意边小于其余三边之和
换句话说就是 最长边小于其余三边之和
这样的话问题转化为 最长边依次减其余三边的结果是否小于等于0
还有一点是题目出现0边 即最小边不为0 想得太多反而把0也算为合法。。。。
问题只需要 sort一下 判断a[0]==0||a[3]-a[2]-a[1]-a[0]>=0 输出NO //存在0边且最大边大于其他边之和
第二题 好多种姿势 题目链接http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=683&pid=1002
官方题解
我们令dp[i][j]表示在前i个数中,选出若干个数使得它们的gcd为j的方案数,于是只需要枚举第i+1个数是否被选中来转移就可以了
令第i+1个数为v,当考虑dp[i][j]的时候,我们令$dp[i+1][j] += dp[i]j,dp[i+1][gcd(j,v)] += dp[i]j
复杂度O(N*MaxV) MaxV 为出现过的数的最大值
其实有O(MaxV *log(MaxV))的做法,我们考虑记f[i]表示从这些数中选择若干个数,使得他们的gcd是i的倍数的方案数。假如有K个数是i的倍数,则 f[i]=2^K-1,再用g[i]表示从这些数中选择若干个数,使得他们的gcd是i的方案数,则g[i]=f[i] - g[j] (对于所有j是i的倍数)。
由调和级数可以得到复杂度为O(MaxV *log(MaxV))
DP之二维数组转移
我们把dp[i][j]作为考虑了第i个数GCD为j的方案数
直接gcd会超时 所以我们打个表GCD
那么dp[i][j]+=dp[i-1][j]; dp[i][GCD[j][v[i]]]+=dp[i-1][j]; 然后就可以转移辣;
#include<cstdio>
#include<map>
//#include<bits/stdc++.h>
#include<vector>
#include<stack>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<queue>
#include<cstdlib>
#include<climits>
#define PI acos(-1.0)
#define INF 0x3fffffff
using namespace std;
typedef long long ll;
typedef __int64 int64;
const ll mood=1e9+;
const int64 Mod=;
const double eps=1e-;
const int N=;
const int MAXN=;
typedef int rl;
inline void r(rl&num){
num=;rl f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')num=num*+ch-'',ch=getchar();
num*=f;
}
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int v[N];
int GCD[N][N];
int64 dp[N][N];
int main()
{
for(int i=;i<;i++)
{
for(int j=;j<=i;j++)
{
GCD[i][j]=GCD[j][i]=gcd(i,j);
}
}
int ci;
r(ci);
while(ci--)
{
int n;
r(n);
int mx=-;
for(int i=;i<=n;i++)
{
r(v[i]);
mx=max(mx,v[i]);
dp[i][v[i]]=;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=mx;j++)
{
dp[i][j]+=dp[i-][j];
dp[i][j]%=Mod;
dp[i][GCD[j][v[i]]]+=dp[i-][j];
dp[i][GCD[j][v[i]]]%=Mod;
}
}
int64 ans=; for(int i=;i<=mx;i++)
{ ans+=(dp[n][i]*i)%Mod;
ans%=Mod;
}
memset(dp,,sizeof(dp));
memset(v,,sizeof(v));
printf("%I64d\n",ans);
}
return ;
}
二维
仔细想了一下 觉得可以优化为滚动数组 试了好久不对 最后瞎蒙
每个数都多考虑了一次 所以/2需要乘逆元 正好1e8+7是素数
Mod为素数,那么还可以根据费马小定理得到逆元为 2的(Mod-2)次方%Mod
即除2等于乘2的(Mod-2)次方%Mod
所以加了一个快速幂 但是优化为滚动数组后 时间增加了一丢丢 但空间大幅度减少
16757862 | 2016-04-03 12:45:34 | Accepted | 5656 | 2511MS | 5504K | 1925 B | G++ | zxMrlc |
16755798 | 2016-04-03 00:36:10 | Accepted | 5656 | 2449MS | 13404K | 1722 B | G++ | zxMrlc |
但是姿势老感觉有问题 等wtw学长指点后我再改改 还有官方的第二个姿势还没有学会。。。衰
#include<cstdio>
#include<map>
//#include<bits/stdc++.h>
#include<vector>
#include<stack>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<queue>
#include<cstdlib>
#include<climits>
#define PI acos(-1.0)
#define INF 0x3fffffff
using namespace std;
typedef long long ll;
typedef __int64 int64;
const ll mood=1e9+;
const int64 Mod=;
const double eps=1e-;
const int N=;
const int MAXN=;
typedef int rl;
inline void r(rl&num){
num=;rl f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')num=num*+ch-'',ch=getchar();
num*=f;
}
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int v[N];
int GCD[N][N];
int64 dp[N];
int main()
{
int64 xx=Mod-;
int64 an=,t=;
while(xx>)
{
if(xx&) an*=t;
xx/=;
an%=Mod;
t*=t;
t%=Mod;
}
for(int i=;i<;i++)
{
for(int j=;j<=i;j++)
{
GCD[i][j]=GCD[j][i]=gcd(i,j);
}
} int ci;
r(ci);
while(ci--)
{
int n;
r(n);
int mx=-;
for(int i=;i<=n;i++)
{
r(v[i]);
mx=max(mx,v[i]);
} for(int i=;i<=n;i++)
{
dp[v[i]]++;
for(int j=;j<=mx;j++)
{
// dp[i][j]+=dp[i-1][j];
dp[j]%=Mod;
dp[GCD[j][v[i]]]+=dp[j];
dp[GCD[j][v[i]]]%=Mod;
}
}
int64 ans=;
//for(int i=1;i<=mx;i++) cout<<dp[i]<<endl;
for(int i=;i<=mx;i++)
{ ans+=(dp[i]*i)%Mod;
ans%=Mod;
}
memset(dp,,sizeof(dp));
memset(v,,sizeof(v));
printf("%I64d\n",ans*an%Mod);
}
return ;
}
滚动数组
我们每次加入的数据会导致翻倍 所以刚才改为加完/2;
因为添加的v[i]导致的影响就是 当前位置dp[v[i]]多1 即方案数多了选自己的 所以在循环结尾-1就ok了 。。。根本不需要模除 但时间特么变大了
还是有点模糊的 不太清楚到底怎么回事。
16758163 | 2016-04-03 13:17:49 | Accepted | 5656 | 2636MS | 5504K | 1730 B | G++ | zxMrlc |
#include<cstdio>
#include<map>
//#include<bits/stdc++.h>
#include<vector>
#include<stack>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<set>
#include<queue>
#include<cstdlib>
#include<climits>
#define PI acos(-1.0)
#define INF 0x3fffffff
using namespace std;
typedef long long ll;
typedef __int64 int64;
const ll mood=1e9+;
const int64 Mod=;
const double eps=1e-;
const int N=;
const int MAXN=;
typedef int rl;
inline void r(rl&num){
num=;rl f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')num=num*+ch-'',ch=getchar();
num*=f;
}
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int v[N];
int GCD[N][N];
int64 dp[N];
int main()
{
for(int i=;i<;i++)
{
for(int j=;j<=i;j++)
{
GCD[i][j]=GCD[j][i]=gcd(i,j);
}
} int ci;
r(ci);
while(ci--)
{
int n;
r(n);
int mx=-;
for(int i=;i<=n;i++)
{
r(v[i]);
mx=max(mx,v[i]);
} for(int i=;i<=n;i++)
{
dp[v[i]]++;
for(int j=;j<=mx;j++)
{
// dp[i][j]+=dp[i-1][j];
dp[j]%=Mod;
dp[GCD[j][v[i]]]+=dp[j];
dp[GCD[j][v[i]]]%=Mod;
}
dp[v[i]]--;
}
int64 ans=;
for(int i=;i<=mx;i++)
{ ans+=(dp[i]*i)%Mod;
ans%=Mod;
}
memset(dp,,sizeof(dp));
memset(v,,sizeof(v));
printf("%I64d\n",ans%Mod);
}
return ;
}
滚动第二次优化
BC div2补题以及 复习模除 逆元__BestCoder Round #78 (div.2)的更多相关文章
- codeforces round 422 div2 补题 CF 822 A-F
A I'm bored with life 水题 #include<bits/stdc++.h> using namespace std; typedef long long int LL ...
- codeforces round 421 div2 补题 CF 820 A-E
A Mister B and Book Reading O(n)暴力即可 #include<bits/stdc++.h> using namespace std; typedef lon ...
- Codeforces round 419 div2 补题 CF 816 A-E
A Karen and Morning 水题 注意进位即可 #include<bits/stdc++.h> using namespace std; typedef long long i ...
- codeforces 447 A-E div2 补题
A DZY Loves Hash 水题 #include<iostream> #include<cstdio> #include<cstdlib> #include ...
- codeforces round 418 div2 补题 CF 814 A-E
A An abandoned sentiment from past 水题 #include<bits/stdc++.h> using namespace std; int a[300], ...
- codeforces round 417 div2 补题 CF 812 A-E
A Sagheer and Crossroads 水题略过(然而被Hack了 以后要更加谨慎) #include<bits/stdc++.h> using namespace std; i ...
- codeforces round 416 div2 补题 CF 811 A B C D E
A. Vladik and Courtesy 水题略过 #include<cstdio> #include<cstdlib> #include<cmath> usi ...
- codeforces round 420 div2 补题 CF 821 A-E
A Okabe and Future Gadget Laboratory 暴力 #include<bits/stdc++.h> using namespace std; typedef l ...
- 2018 HDU多校第三场赛后补题
2018 HDU多校第三场赛后补题 从易到难来写吧,其中题意有些直接摘了Claris的,数据范围是就不标了. 如果需要可以去hdu题库里找.题号是6319 - 6331. L. Visual Cube ...
随机推荐
- POJ - 2312 Battle City BFS+优先队列
Battle City Many of us had played the game "Battle city" in our childhood, and some people ...
- VR相关网站
VR87870 http://www.87870.com/ VR玩家网 http://www.vrwanjia.cn/ VR之家 http://www.vr.cn/ http://gad.qq.com ...
- [Xcode 实际操作]九、实用进阶-(30)为IAP(支付方式)内购项目添加测试账号,测试内购功能
目录:[Swift]Xcode实际操作 本文将演示如何添加测试账号,以方便对内购功能进行测试. IAP,即in-App Purchase ,是一种智能移动终端应用程序付费的模式, 在苹果(Apple) ...
- JQuery:介绍、安装、选择器、属性操作、动画
目录 jQuery 详细内容 1.JQuery介绍 2.JQuery的下载安装 3.JQuery的使用 4.jQuery的选择器 5.JQuery的属性操作 6.动画 6.自定义动画 jQuery 详 ...
- ADO学途 three day
1· 程序的根本----数据 一个程序是用来处理数据算法的具体表现,可以说没有数据,程序就没有意义.今天主 要分享在一个程序中数据的支持者SQL server的建立和使用.首先当然不可缺少SQL se ...
- [arc063]F.すぬけ君の塗り絵2
因为这题考虑可以观察一个性质,答案的下界为 \(2×(max(w,h)+1)\), 因为你至少可以空出一行或一列,因此这个矩形一定会经过 \(x=\frac{w}{2}\) 或 \(y=\frac{h ...
- E.华华给月月准备礼物
链接:https://ac.nowcoder.com/acm/contest/392/E 题意: 二月中旬虐狗节前夕,华华决定给月月准备一份礼物.为了搭建礼物的底座,华华需要若干根同样长的木棍.华华手 ...
- AKOJ-2037-出行方案
链接:https://oj.ahstu.cc/JudgeOnline/problem.php?id=2037 题意: 安科的夏天真是不一般的热,避免炎热,伍学长因此想为自己规划一个校园出行方案,使得从 ...
- Codeforces 1139E(二分图最大匹配)
pi只有0-5000且只找最小的没出现的,又要找不同club的,考虑二分匹配,左边pi,右边ci,一个匹配一个.离线倒着加边即可. const int maxn = 5e3 + 5; int m, n ...
- 20180401 lambda表达式
##lambda表达式:替代简单函数用 (反而增加了代码阅读难度,不建议使用) def fg(a1,a2): return a1+a2 qq = lambda a1,a2 : a1+a2 a1 = 1 ...