题目描述

A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一。每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征。一些旅行者希望游览 A 国。旅行者计划乘飞机降落在 x 号城市,沿着 x 号城市到 y 号城市之间那条唯一的路径游览,最终从 y 城市起飞离开 A 国。在经过每一座城市时,游览者就会有机会与这座城市的幸运数字拍照,从而将这份幸运保存到自己身上。然而,幸运是不能简单叠加的,这一点游览者也十分清楚。他们迷信着幸运数字是以异或的方式保留在自己身上的。例如,游览者拍了 3 张照片,幸运值分别是 5,7,11,那么最终保留在自己身上的幸运值就是 9(5 xor 7 xor 11)。有些聪明的游览者发现,只要选择性地进行拍照,便能获得更大的幸运值。例如在上述三个幸运值中,只选择 5 和 11 ,可以保留的幸运值为 14 。现在,一些游览者找到了聪明的你,希望你帮他们计算出在他们的行程安排中可以保留的最大幸运值是多少。

输入

第一行包含 2 个正整数 n ,q,分别表示城市的数量和旅行者数量。第二行包含 n 个非负整数,其中第 i 个整数 Gi 表示 i 号城市的幸运值。随后 n-1 行,每行包含两个正整数 x ,y,表示 x 号城市和 y 号城市之间有一条道路相连。随后 q 行,每行包含两个正整数 x ,y,表示这名旅行者的旅行计划是从 x 号城市到 y 号城市。N<=20000,Q<=200000,Gi<=2^60

输出

输出需要包含 q 行,每行包含 1 个非负整数,表示这名旅行者可以保留的最大幸运值。

样例输入

4 2
11 5 7 9
1 2
1 3
1 4
2 3
1 4

样例输出

14
11


题解

自己yy出的树上倍增+高斯消元动态维护线性基

求最大异或和,显然需要使用线性基。那么对于每组询问,拿出路径上的线性基即可。

采用树上倍增的方法,设$f[i][x]$为x的$2^i$祖先,$a[i][x]$为x(包括)到$f[i][x]$(不包括)的路径上的点的线性基。

那么需要做的就是合并线性基。这里将小的暴力插入到大的中。对于插入的一个数,如果不能用原来的线性基把它消掉,那么就添加该数,并使用插入排序维护线性基单调递减。

最后贪心求解即可。

复杂度为感人的$O(q\log n\log^2g)$,实际跑了20s--

另外本题维护线性基如果使用vector则会MLE,所以必须使用数组。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 20010
using namespace std;
typedef long long ll;
struct data
{
ll v[64];
int tot;
data() {memset(v , 0 , sizeof(v)) , tot = 0;}
void insert(ll x)
{
int i;
for(i = 0 ; i < tot ; i ++ )
if((x ^ v[i]) < x)
x ^= v[i];
if(x)
{
v[++tot] = x;
for(i = tot ; i ; i -- )
{
if(v[i] > v[i - 1]) swap(v[i] , v[i - 1]);
else break;
}
}
}
ll query()
{
ll ans = 0;
int i;
for(i = 0 ; i < tot ; i ++ )
if((ans ^ v[i]) > ans)
ans ^= v[i];
return ans;
}
}a[15][N];
ll w[N];
int head[N] , to[N << 1] , next[N << 1] , cnt , fa[15][N] , deep[N] , log[N];
void add(int x , int y)
{
to[++cnt] = y , next[cnt] = head[x] , head[x] = cnt;
}
void merge(data a , data b , data *c)
{
if(a.tot > b.tot) swap(a , b);
c->tot = b.tot;
int i;
for(i = 0 ; i < b.tot ; i ++ ) c->v[i] = b.v[i];
for(i = 0 ; i < a.tot ; i ++ ) c->insert(a.v[i]);
}
void dfs(int x)
{
int i;
a[0][x].v[a[0][x].tot ++ ] = w[x];
for(i = 1 ; (1 << i) <= deep[x] ; i ++ )
fa[i][x] = fa[i - 1][fa[i - 1][x]] , merge(a[i - 1][x] , a[i - 1][fa[i - 1][x]] , &a[i][x]);
for(i = head[x] ; i ; i = next[i])
if(to[i] != fa[0][x])
fa[0][to[i]] = x , deep[to[i]] = deep[x] + 1 , dfs(to[i]);
}
ll solve(int x , int y)
{
data tmp;
int i;
if(deep[x] < deep[y]) swap(x , y);
for(i = log[deep[x] - deep[y]] ; ~i ; i -- )
if(deep[x] - (1 << i) >= deep[y])
merge(tmp , a[i][x] , &tmp) , x = fa[i][x];
for(i = log[deep[x]] ; ~i ; i -- )
if(deep[x] >= (1 << i) && fa[i][x] != fa[i][y])
merge(tmp , a[i][x] , &tmp) , merge(tmp , a[i][y] , &tmp) , x = fa[i][x] , y = fa[i][y];
if(x != y) merge(tmp , a[0][x] , &tmp) , merge(tmp , a[0][y] , &tmp) , x = fa[0][x];
tmp.insert(w[x]);
return tmp.query();
}
int main()
{
int n , m , i , x , y;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &w[i]);
for(i = 1 ; i < n ; i ++ ) scanf("%d%d" , &x , &y) , add(x , y) , add(y , x);
for(i = 2 ; i <= n ; i ++ ) log[i] = log[i >> 1] + 1;
deep[1] = 1 , dfs(1);
while(m -- ) scanf("%d%d" , &x , &y) , printf("%lld\n" , solve(x , y));
return 0;
}

【bzoj4568】[Scoi2016]幸运数字 树上倍增+高斯消元动态维护线性基的更多相关文章

  1. 【bzoj4184】shallot 线段树+高斯消元动态维护线性基

    题目描述 小苗去市场上买了一捆小葱苗,她突然一时兴起,于是她在每颗小葱苗上写上一个数字,然后把小葱叫过来玩游戏. 每个时刻她会给小葱一颗小葱苗或者是从小葱手里拿走一颗小葱苗,并且 让小葱从自己手中的小 ...

  2. HDU3949:XOR(高斯消元)(线性基)

    传送门 题意 给出n个数,任意个数任意数异或构成一个集合,询问第k大个数 分析 这题需要用到线性基,下面是一些资料 1.高斯消元&线性基&Matirx_Tree定理 笔记 2.关于线性 ...

  3. bzoj2115 [Wc2011] Xor——高斯消元 & 异或线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2115 异或两次同一段路径的权值,就相当于没有走这段路径: 由此可以得到启发,对于不同的走法, ...

  4. 2019.03.25 bzoj4568: [Scoi2016]幸运数字(倍增+线性基)

    传送门 题意:给你一棵带点权的树,多次询问路径的最大异或和. 思路: 线性基上树?? 倍增维护一下就完了. 时间复杂度O(nlog3n)O(nlog^3n)O(nlog3n) 代码: #include ...

  5. BZOJ 4004: [JLOI2015]装备购买 [高斯消元同余 线性基]

    和前两(一)题一样,不过不是异或方程组了..... 然后bzoj的新数据是用来卡精度的吧..... 所有只好在模意义下做啦 只是巨慢无比 #include <iostream> #incl ...

  6. [BZOJ4568][Scoi2016]幸运数字 倍增+线性基

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1791  Solved: 685[Submit][Statu ...

  7. [BZOJ4568][SCOI2016]幸运数字(倍增LCA,点分治+线性基)

    4568: [Scoi2016]幸运数字 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 2131  Solved: 865[Submit][Statu ...

  8. bzoj4568: [Scoi2016]幸运数字(LCA+线性基)

    4568: [Scoi2016]幸运数字 题目:传送门 题解: 好题!!! 之前就看过,当时说是要用线性基...就没学 填坑填坑: %%%线性基 && 神犇 主要还是对于线性基的运用和 ...

  9. BZOJ4568 [Scoi2016]幸运数字 【点分治 + 线性基】

    题目链接 BZOJ4568 题解 选任意个数异或和最大,使用线性基 线性基插入\(O(logn)\),合并\(O(log^2n)\) 我们要求树上两点间异或和最大值,由于合并是\(O(log^2n)\ ...

随机推荐

  1. java面试题(杨晓峰)---第四讲强引用、软引用、弱引用、幻想引用有什么区别?

    在java语言中,除了原始数据类型的变量,其他所有都是所谓的引用类型,指向各种不同的对象,理解引用对于掌握java对象生命周期和JVM内部相关机制非常有帮助. 今天问题:强引用.软引用.弱引用.幻想引 ...

  2. Linux 的数字权限意义

    三个组 每个都有三个权限 r w x每个权限用二进制 0 和 1 标示 1即为有此权限 0 标示无权限  ower    group  other  r w x    r w x  r w x 每个组 ...

  3. 11g 新特性 Member Kill Escalation 简介

    首先我们介绍一下历史.在oracle 9i/10g 中,如果一个数据库实例需要驱逐(evict, alert 文件中会出现ora-29740错误)另一个实例时,需要通过LMON进程在控制文件(以下简称 ...

  4. [C++讨论课] 课堂记录(一)

    今天第一次参加c++讨论课,记录下了各组同学的展示的问题或者解决方法,也有一些知识点上的内容,供以后复习参考. 1.常量指针和指针常量问题 常量指针:指向常量的指针,例如const int *p =  ...

  5. VPS Linux SSH 客户端断开后保持进程继续运行配置方法——screen

    前言 在Linux中,我们经常会做一些关于数据的操作(备份.传输.压缩等)或是要在后台持续的运行一些程序.由于,工作的数据量很大或者工作要持续很长的时间,我们就必须保证这个终端的启动,一旦终端关闭了, ...

  6. 241个jquery插件—jquery插件大全

    jQuery由美国人John Resig创建,至今已吸引了来自世界各地的众多javascript高手加入其team. jQuery是继prototype之后又一个优秀的Javascrīpt框架.其经典 ...

  7. 2018.2.09 php学习(二)

    1.用索引提高效率: 索引是表的一个概念部分,用来提高检索数据的效率,ORACLE使用了一个复杂的自平衡B-tree结构. 通常,通过索引查询数据比全表扫描要快. 当ORACLE找出执行查询和Upda ...

  8. 【转】 树莓派初次启动攻略for Mac

    http://blog.csdn.net/rk2900/article/details/8632713/ 树莓派初次启动攻略for Mac made by Rk 感谢浙江大学<嵌入式系统> ...

  9. Java中的集合Collection接口

    /* 集合:集合是存储对象数据的集合容器.集合比数组的优势: 1. 集合可以存储任意类型的对象数据,数组只能存储同一种数据类型 的数据. 2. 集合的长度是会发生变化的,数组的长度是固定的.----- ...

  10. Servlet的引入(即加入Servlet)

    今天讲的Servlet是根据上一章节<创建一个学生信息表,与页面分离>而结合. 一.看图分析 此模式有问题: 1.jsp需要呼叫javabean StudentService stuSer ...