Problem statement

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Solution

0/1 knapsack problem is a classical dynamic programming model. There is a knapsack with the capacity of m, you should find the maximum volume can be filled in.

Still, we need:

  • DP memory and the representation
  • The initialization of DP memory
  • DP formula
  • Return value.

DP memory and the representation

Suppose, size is the number of elements in A.

A two dimension array: dp[size + 1][m + 1]

  • dp[i][j]: means the maximum volume formed by first i elements whose volume is at most j.

The key word is the first and at most.

  • The first means there are i + 1 elements.
  • At most means the total volume can not exceed j.

Initialization

For a two dimension DP memory, normally, we should initialize the first row and column, and start from i = 1 and j = 1. The initialization comes from general knowledge.

  • dp[0][i]: first 0 elements can form at most i volume. Obviously, the initialization is 0 since we can get nothing if there is no elements.
  • dp[i][0]: first i elements can form at most 0 volume. Obviously, the initialization is 0 since we can get 0 volume by any elements.

DP formula

For current element A[i], we need to know what is the maximum volume can get if we add it into the backpack.

  • dp[i][j] = dp[i - 1][j] if A[i - 1] is greater than j
  • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - A[i - 1]]) if j >= A[i - 1], we find the maximum value.

Return value.

Just return dp[size][m]

Time complexity is O(size * m)

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
// write your code here
int size = A.size();
//vector<vector<int>> dp(size + 1, vector<int>(m + 1, 0));
int dp[size + ][m + ] = {};
for(int i = ; i <= size; i++){
for(int j = ; j <= m; j++){
dp[i][j] = dp[i - ][j];
if(j >= A[i - ]){
dp[i][j] = max(dp[i][j], V[i - ] + dp[i - ][j - A[i - ]]);
}
}
}
return dp[size][m];
}
};

0/1 knapsack problem的更多相关文章

  1. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  2. 对背包问题(Knapsack Problem)的算法探究

    对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. FZU 2214 ——Knapsack problem——————【01背包的超大背包】

    2214 Knapsack problem Accept: 6    Submit: 9Time Limit: 3000 mSec    Memory Limit : 32768 KB  Proble ...

  5. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  6. knapsack problem 背包问题 贪婪算法GA

    knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...

  7. [DP] The 0-1 knapsack problem

    Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...

  8. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  9. (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)

    http://acm.fzu.edu.cn/problem.php?pid=2214   Problem Description Given a set of n items, each with a ...

随机推荐

  1. kubernetes-ingress(十)

    ingress https://kubernetes.io/docs/concepts/services-networking/ingress/ pod与ingress的关系 •通过label-sel ...

  2. 多线程:InterlockedIncrement

    1.InterlockedIncrement保护多线程中操作的整数. #include <stdio.h> #include <windows.h> volatile long ...

  3. pycharm在同目录下import,pycharm会提示错误,但是可以运行

    原因是:    pycharm不会将当前文件目录自动加入自己的sourse_path. 解决方案:右键make_directory as-->sources path将当前工作的文件夹加入sou ...

  4. iftop工具指令选项记录

    iftop是实时监控网卡流量的工具,功能十分强大,指令选项非常多,用法比较复杂,下面记录一下命令的选择作用 相关参数及说明 1.iftop界面相关说明 界面上面显示的是类似刻度尺的刻度范围,为显示流量 ...

  5. Linux入门-第八周

    1.用shell脚本实现自动登录机器 #!/usr/bin/expectset ip 192.168.2.192set user rootset password rootspawn ssh $use ...

  6. 三十五、MySQL 运算符

    MySQL 运算符 本章节我们主要介绍 MySQL 的运算符及运算符的优先级. MySQL 主要有以下几种运算符: 算术运算符 比较运算符 逻辑运算符 位运算符 算术运算符 MySQL 支持的算术运算 ...

  7. Python导入模块方法

    import module_name 导入整个模块 from module_name import function_name 导入特定函数 from module_name import funct ...

  8. L2TP用户添加和删除、搜索脚本

    #!/bin/bash #author Template . /etc/init.d/functions DATE_TIME=$(date +%F-%T) FILE_PATH='/etc/ppp/ch ...

  9. python双向链表的疑问(Question)

    Table of Contents 1. 问题 问题 在看 collections.OrderedDict 的源码时,对于它如何构造有序的结构这一部分不是很理解,代码如下: class Ordered ...

  10. RDLC Reporting in Visual Studio 2017

    原文:RDLC Reporting in Visual Studio 2017 Visual Studio 2017 中可以使用 RDLC Reporting 插件来设计报表,SAP Crystal ...