Problem statement

Given n items with size Ai and value Vi, and a backpack with size m. What's the maximum value can you put into the backpack?

Solution

0/1 knapsack problem is a classical dynamic programming model. There is a knapsack with the capacity of m, you should find the maximum volume can be filled in.

Still, we need:

  • DP memory and the representation
  • The initialization of DP memory
  • DP formula
  • Return value.

DP memory and the representation

Suppose, size is the number of elements in A.

A two dimension array: dp[size + 1][m + 1]

  • dp[i][j]: means the maximum volume formed by first i elements whose volume is at most j.

The key word is the first and at most.

  • The first means there are i + 1 elements.
  • At most means the total volume can not exceed j.

Initialization

For a two dimension DP memory, normally, we should initialize the first row and column, and start from i = 1 and j = 1. The initialization comes from general knowledge.

  • dp[0][i]: first 0 elements can form at most i volume. Obviously, the initialization is 0 since we can get nothing if there is no elements.
  • dp[i][0]: first i elements can form at most 0 volume. Obviously, the initialization is 0 since we can get 0 volume by any elements.

DP formula

For current element A[i], we need to know what is the maximum volume can get if we add it into the backpack.

  • dp[i][j] = dp[i - 1][j] if A[i - 1] is greater than j
  • dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - A[i - 1]]) if j >= A[i - 1], we find the maximum value.

Return value.

Just return dp[size][m]

Time complexity is O(size * m)

class Solution {
public:
/**
* @param m: An integer m denotes the size of a backpack
* @param A & V: Given n items with size A[i] and value V[i]
* @return: The maximum value
*/
int backPackII(int m, vector<int> A, vector<int> V) {
// write your code here
// write your code here
int size = A.size();
//vector<vector<int>> dp(size + 1, vector<int>(m + 1, 0));
int dp[size + ][m + ] = {};
for(int i = ; i <= size; i++){
for(int j = ; j <= m; j++){
dp[i][j] = dp[i - ][j];
if(j >= A[i - ]){
dp[i][j] = max(dp[i][j], V[i - ] + dp[i - ][j - A[i - ]]);
}
}
}
return dp[size][m];
}
};

0/1 knapsack problem的更多相关文章

  1. FZU 2214 Knapsack problem 01背包变形

    题目链接:Knapsack problem 大意:给出T组测试数据,每组给出n个物品和最大容量w.然后依次给出n个物品的价值和体积. 问,最多能盛的物品价值和是多少? 思路:01背包变形,因为w太大, ...

  2. 对背包问题(Knapsack Problem)的算法探究

    对背包问题(Knapsack Problem)的算法探究 至繁归于至简,这次自己仍然用尽可能易理解和阅读的解决方式. 1.问题说明: 假设有一个背包的负重最多可达8公斤,而希望在背包中装入负重范围内可 ...

  3. 动态规划法(四)0-1背包问题(0-1 Knapsack Problem)

      继续讲故事~~   转眼我们的主人公丁丁就要离开自己的家乡,去大城市见世面了.这天晚上,妈妈正在耐心地帮丁丁收拾行李.家里有个最大能承受20kg的袋子,可是妈妈却有很多东西想装袋子里,已知行李的编 ...

  4. FZU 2214 ——Knapsack problem——————【01背包的超大背包】

    2214 Knapsack problem Accept: 6    Submit: 9Time Limit: 3000 mSec    Memory Limit : 32768 KB  Proble ...

  5. FZU-2214 Knapsack problem(DP使用)

    Problem 2214 Knapsack problem Accept: 863    Submit: 3347Time Limit: 3000 mSec    Memory Limit : 327 ...

  6. knapsack problem 背包问题 贪婪算法GA

    knapsack problem 背包问题贪婪算法GA 给点n个物品,第j个物品的重量,价值,背包的容量为.应选哪些物品放入包内使物品总价值最大? 规划模型 max s.t. 贪婪算法(GA) 1.按 ...

  7. [DP] The 0-1 knapsack problem

    Give a dynamic-programming solution to the 0-1 knapsack problem that runs in O(nW) time, where n is ...

  8. FZU - 2214 Knapsack problem 01背包逆思维

    Knapsack problem Given a set of n items, each with a weight w[i] and a value v[i], determine a way t ...

  9. (01背包 当容量特别大的时候) Knapsack problem (fzu 2214)

    http://acm.fzu.edu.cn/problem.php?pid=2214   Problem Description Given a set of n items, each with a ...

随机推荐

  1. vue watch深度监听对象,实现数据联动

    当对象内的某一个元素发生变化,判断对象另一元素,并进行赋值 <template> <input type="text" v-model="a.a1.a1 ...

  2. 51nod——2476 小b和序列(预处理 思维)

    对于每一个元素,预处理出它作为最小值,两边可以作用到的最大位置.比如下标∈[0,8]的这个数组:1 8 6 2 5 4 3 8 7,1可以作用到所有区间,2可以作用到区间[1,8],第一个8可以作用到 ...

  3. Python知识点入门笔记——特色数据类型(元组)

    元组(tuple)是Python的另一种特色数据类型,元组和列表是相似的,可以存储不同类型的数据,但是元组是不可改变的,创建后就不能做任何修改操作. 创建元组 用逗号隔开的就是元组,但是为了美观和代码 ...

  4. 动态规划:HDU1864-最大报销额(处理带小数的dp问题)

    最大报销额 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Descriptio ...

  5. Eclipse快速输出System.out.println();

    借鉴网上大佬博客 刚开始还好好敲代码 后来看博客发现其实输入syso或sysout 再按alt+/就OK 开始学JAVA,好好干.

  6. Spark性能优化:资源调优篇

    在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置 ...

  7. 8 REST Framework 实现Web API 1

    1 参考博客: http://blog.csdn.net/SVALBARDKSY/article/details/50548073 2  准备工作 1. 环境 Python: Python 3.5 D ...

  8. BZOJ 4971: [Lydsy1708月赛]记忆中的背包

    神仙构造 分成x个1和一堆>=w-x的大物品 (x<=20 w>=50) 则拼成w的方案中有且仅有一个大物品 若最终序列中有x个1,有一个大物品为w-k,可以提供C(x,k)种方案 ...

  9. day15 CSS JS DOM初探

    居中  line-hight  是上下          text-line  是左右    实现一个返回顶部的功能: 1 先写好CSS 2 写动作JS 写一个悬浮菜单: <!DOCTYPE h ...

  10. Asp.net Mvc 页面静态化

    http://www.cnblogs.com/gowhy/archive/2013/01/01/2841472.html