显然,考虑当前状态最少需要几步,直接贪心即可。

显然我们只需要考虑消掉这几个就好了。

然后发现,关系式找出来很简单,是$f(i) f(i+1) f(i-1)$之间的。

但是计算的时候并不好算。

所以把意义进行差分用$g(i)$表示从$i$到$i-1$期望的次数。

然后就找到了二阶递推式递推即可。

#include <map>
#include <ctime>
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
#define F(i,j,k) for (int i=j;i<=k;++i)
#define D(i,j,k) for (int i=j;i>=k;--i)
#define md 100003
#define ll long long
#define maxn 100005 int n,k,a[maxn],g[maxn],cnt,fac,inv[maxn]; int main()
{
scanf("%d%d",&n,&k);
fac=1;F(i,2,n)fac=(ll)fac*i%md;
F(i,1,n) scanf("%d",&a[i]);
D(i,n,1)
{
if (a[i])
{
++cnt;
F(j,1,sqrt(i))
if (i%j==0)
{
a[i/j]^=1;
if (i/j!=j) a[j]^=1;
}
}
}
if (cnt<=k) {printf("%d\n",(ll)cnt*fac%md);return 0;}
F(i,1,k) g[i]=1; g[n]=1;
inv[1]=1;F(i,2,n) inv[i]=(ll)(md-md/i)*inv[md%i]%md;
D(i,n-1,k+1) g[i]=((ll)(n-i)*g[i+1]%md+n)*inv[i]%md;
int ans=0;
F(i,1,cnt) ans+=g[i],ans%=md;
printf("%d\n",(ll)ans*fac%md);
}

  

BZOJ 4827 [Shoi2017]分手是祝愿 ——期望DP的更多相关文章

  1. bzoj 4872: [Shoi2017]分手是祝愿 [期望DP]

    4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod ...

  2. 【BZOJ】4872: [Shoi2017]分手是祝愿 期望DP

    [题意]给定n盏灯的01状态,操作第 i 盏灯会将所有编号为 i 的约数的灯取反.每次随机操作一盏灯直至当前状态能够在k步内全灭为止(然后直接灭),求期望步数.n,k<=10^5. [算法]期望 ...

  3. 【bzoj4872】[Shoi2017]分手是祝愿 期望dp

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  4. [BZOJ4872][六省联考2017]分手是祝愿(期望DP)

    4872: [Shoi2017]分手是祝愿 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 516  Solved: 342[Submit][Statu ...

  5. P3750 [六省联考2017]分手是祝愿 期望DP

    \(\color{#0066ff}{ 题目描述 }\) Zeit und Raum trennen dich und mich. 时空将你我分开. B 君在玩一个游戏,这个游戏由 \(n\) 个灯和 ...

  6. 【BZOJ4872】【SHOI2017】分手是祝愿 期望DP

    题目大意 有\(n\)盏灯和\(n\)个开关,初始时有的灯是亮的,有的灯是暗的.按下第\(i\)个开关会使第\(j\)盏灯的状态被改变,其中\(j|i\).每次你会随机操作一个开关,直到可以通过不多于 ...

  7. bzoj 4872: [Shoi2017]分手是祝愿

    Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n 个灯和 n 个开关组成,给定这 n 个灯的初始状态 ...

  8. [六省联考2017]分手是祝愿 期望DP

    表示每次看见期望的题就很懵逼... 但是这题感觉还是值得一做,有可借鉴之处 要是下面这段文字格式不一样的话(虽然好像的确不一样,我也不知道为什么,是直接从代码里面复制出来的,因为我一般都是习惯在代码里 ...

  9. [六省联考2017]分手是祝愿——期望DP

    原题戳这里 首先可以确定的是最优策略一定是从大到小开始,遇到亮的就关掉,因此我们可以\(O(nlogn)\)的预处理出初始局面需要的最小操作次数\(tot\). 然后容(hen)易(nan)发现即使加 ...

随机推荐

  1. 设置RichTextBox控件的文本的对齐方式

    实现效果: 知识运用: RichTextBox控件的SelectionAlignment属性 //获取或设置在当前选择或插入点的对齐方式 public HorizontalAlignment Sele ...

  2. python_66_生成器2

    import time def consumer(name): print('%s准备吃包子 '%name) while True: baozi=yield print('包子[%s]来了,被[%s] ...

  3. 逗塔战争TD新人入门图文攻略

    逗塔战争TD新人入门图文攻略   <逗塔战争TD>是一张基于DOTA改编的塔防TD,很多玩家都很喜欢这张图,新手玩家怎么快速上手这张图呢?这张图的玩法和基本规则并不难,下面就为大家带来新人 ...

  4. 3- vue django restful framework 打造生鲜超市 - model设计和资源导入

    3- vue django restful framework 打造生鲜超市 - model设计和资源导入 使用Python3.6与Django2.0.2(Django-rest-framework) ...

  5. Linux-git安装

    基本操作 安装yum install git 生成SSH KEY :先cd ~/.ssh,在这个目录下输入ssh-keygen,一直回车就可以了,这个时候就会出现id_rsd.pub公钥和id_rsa ...

  6. ethtool查看网卡以及修改网卡配置

    ethtool 命令详解 命令描述: ethtool 是用于查询及设置网卡参数的命令. 使用概要:ethtool ethx       //查询ethx网口基本设置,其中 x 是对应网卡的编号,如et ...

  7. Java面向对象---方法递归调用

    递归调用是一种特殊的调用形式,即方法自己调用自己 public int method(int num){ if(num==1){ return 1; } else { return num+metho ...

  8. 开源中国app说什么 旁边的那个图标是什么drawable

    妈的,那就只是一个 ActionBarDrawerToggle: 配合侧滑菜单而生的而已.

  9. 设计模式之序章-UML类图那点事儿

    设计模式之序-UML类图那点事儿 序 打14年年底就像写那么一个系列,用于讲设计模式的,代码基于JAVA语言,最早接触设计模式是大一还是大二来着,那时候网上有人给推荐书,其中就有设计模式,当时给我推荐 ...

  10. 【Restore IP Addresses 】cpp

    题目: Given a string containing only digits, restore it by returning all possible valid IP address com ...