bzoj3694最短路
bzoj3694最短路
Description
给出一个n个点m条边的无向图,n个点的编号从1~n,定义源点为1。定义最短路树如下:从源点1经过边集T到任意一点i有且仅有一条路径,且这条路径是整个图1到i的最短路径,边集T构成最短路树。 给出最短路树,求对于除了源点1外的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径的最后一条边。
Input
第一行包含两个数n和m,表示图中有n个点和m条边。
接下来m行,每行有四个数ai,bi,li,ti,表示图中第i条边连接ai和bi权值为li,ti为1表示这条边是最短路树上的边,ti为0表示不是最短路树上的边。
Output
输出n-1个数,第i个数表示从1到i+1的要求的最短路。无法到达输出-1。
Sample Input
5 9
3 1 3 1
1 4 2 1
2 1 6 0
2 3 4 0
5 2 3 0
3 2 2 1
5 3 1 1
3 5 2 0
4 5 4 0
Sample Output
6 7 8 5
HINT
对于100%的数据,n≤4000,m≤100000,1≤li≤100000
solution
我的方法很诡异
首先删一条边相当于把一棵子树孤立出来。
那么答案应要通过其他边绕到子树外面的点,再回到根。
我们记d[i][j]表示以i为根的子树到其他点的最短路。
可以用类似树形dp的方法把儿子的信息合并上来。
O(n^2+m)
其他方法
考虑一条非树边,假设它连接了u,v
那么他可以贡献的段为u~lca,u~lca
树剖维护
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 4005
#define inf 1e9
using namespace std;
int n,m,t1,t2,t3,t4,head[maxn],tot=1;
int d[maxn][maxn],ans[maxn];
int dfst[maxn],dfsn[maxn],sc,len[maxn],flag[maxn];
struct node{
int v,nex,w,op;
}e[200005];
void lj(int t1,int t2,int t3,int t4){
e[++tot].v=t2;e[tot].w=t3;e[tot].op=t4;e[tot].nex=head[t1];head[t1]=tot;
}
void DFS(int k,int fa){
dfst[k]=++sc;
for(int i=head[k];i;i=e[i].nex){
if(!e[i].op||e[i].v==fa)continue;
len[e[i].v]=len[k]+e[i].w;
DFS(e[i].v,k);
}
dfsn[k]=sc;
}
void dfs(int k,int fa,int b){
for(int i=head[k];i;i=e[i].nex){
if(!e[i].op||e[i].v==fa)continue;
dfs(e[i].v,k,i);
}
for(int i=1;i<=n;i++)d[k][i]=inf;
for(int i=head[k];i;i=e[i].nex){
if(!e[i].op||e[i].v==fa)continue;
for(int x=1;x<=n;x++)d[k][x]=min(d[k][x],d[e[i].v][x]+e[i].w);
flag[e[i].v]=1;
}//合并子树
for(int i=head[k];i;i=e[i].nex){
if(i==(b^1))continue;
d[k][e[i].v]=min(d[k][e[i].v],e[i].w);
}// itself
int l=dfst[k],r=dfsn[k];
//cout<<"k: "<<k<<endl;
ans[k]=inf;
for(int x=1;x<=n;x++){
//cout<<d[k][x]<<' ';
if(dfst[x]<l||dfst[x]>r){
ans[k]=min(ans[k],d[k][x]+len[x]);
}
}//cout<<endl;
for(int i=head[k];i;i=e[i].nex){
flag[e[i].v]=0;
}
}
int main()
{
freopen("shortest.in","r",stdin);
freopen("shortest.out","w",stdout);
cin>>n>>m;
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&t1,&t2,&t3,&t4);
lj(t1,t2,t3,t4);lj(t2,t1,t3,t4);
}
DFS(1,0);
//for(int k=1;k<=n;k++)cout<<k<<' '<<len[k]<<' '<<dfst[k]<<endl;
dfs(1,0,0);
if(ans[2]!=inf)printf("%d",ans[2]);
else printf("-1");
for(int i=3;i<=n;i++){
if(ans[i]==inf)printf(" -1");
else printf(" %d",ans[i]);
}
puts("");
return 0;
}
bzoj3694最短路的更多相关文章
- [bzoj3694]最短路_树链剖分_线段树
最短路 bzoj-3694 题目大意:给你一个n个点m条边的无向图,源点为1,并且以点1为根给出最短路树.求对于2到n的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径上的最后一条边. 注 ...
- [bzoj3694]最短路
Description 给出一个$n$个点$m$条边的无向图,$n$个点的编号从$1-n$,定义源点为$1$. 定义最短路树如下:从源点$1$经过边集$T$到任意一点$i$有且仅有一条路径,且这条路径 ...
- bzoj3694: 最短路(树链剖分/并查集)
bzoj1576的帮我们跑好最短路版本23333(双倍经验!嘿嘿嘿 这题可以用树链剖分或并查集写.树链剖分非常显然,并查集的写法比较妙,涨了个姿势,原来并查集的路径压缩还能这么用... 首先对于不在最 ...
- 「BZOJ3694」「FJ2014集训」最短路
「BZOJ3694」「FJ2014集训」最短路 首先树剖没得说了,这里说一下并查集的做法, 对于一条非树边,它会影响的点就只有u(i),v(i)到lca,对于lca-v的路径上所有点x,都可通过1-t ...
- 最短路 BZOJ3694 树链剖分+线段树
分析: 树剖裸题,[Usaco2009 Jan]安全路经Travel 的简化版 剖开最短路树,遍历每一条没在最短路树上的边. 这种情况下,有且仅有u到v路径上,出来lca之外的点能够通过这条边到达,并 ...
- [BZOJ1576] [BZOJ3694] [USACO2009Jan] 安全路径(最短路径+树链剖分)
[BZOJ1576] [BZOJ3694] [USACO2009Jan] 安全路径(最短路径+树链剖分) 题面 BZOJ1576和BZOJ3694几乎一模一样,只是BZOJ3694直接给出了最短路树 ...
- bzoj1001--最大流转最短路
http://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路:这应该算是经典的最大流求最小割吧.不过题目中n,m<=1000,用最大流会TLE, ...
- 【USACO 3.2】Sweet Butter(最短路)
题意 一个联通图里给定若干个点,求他们到某点距离之和的最小值. 题解 枚举到的某点,然后优先队列优化的dijkstra求最短路,把给定的点到其的最短路加起来,更新最小值.复杂度是\(O(NElogE) ...
- Sicily 1031: Campus (最短路)
这是一道典型的最短路问题,直接用Dijkstra算法便可求解,主要是需要考虑输入的点是不是在已给出的地图中,具体看代码 #include<bits/stdc++.h> #define MA ...
随机推荐
- Charles拦截请求
一.通过Charles抓包,可拦截请求并篡改交互信息 1.可篡改客户端向服务器发起的请求信息(服务器收到的是假消息) 2.可篡改服务器返回给客户端的响应结果(客户端看到的是假消息) 二.篡改用户请求 ...
- IPv4与IPv6的校验函数
1. PHP校验IPv4掩码是否合法,在网上搜了下,排名最高的如下, <?php function is_mask($mask){ $bin_mask =(string)decbin(ip2lo ...
- c# 科学计数法值转换成正常值,返回字符串
/// <summary> /// 科学计数法值转换成正常值 /// </summary> /// <param name="value">&l ...
- 【luogu P3608 [USACO17JAN]Balanced Photo平衡的照片】 题解
题目链接:https://www.luogu.org/problemnew/show/P3608 乍一看很容易想到O(N^2)的暴力. 对于每个H[i]从i~i-1找L[i]再从i+1~n找R[i], ...
- sass安装更新及卸载方法
在 Windows 平台下安装 Ruby 需要先有 Ruby 安装包,大家可以到 Ruby 的官网(http://rubyinstaller.org/downloads)下载对应需要的 Ruby 版本 ...
- 20180911 关于页面加载顺序引发的JS的undefined/null错误
引用: 百度知道-HTML+JavaScript执行顺序问题 这是我在学习JS滚动播放图片案例意外遇到的一个问题,代码完成后console弹出错误警告: Uncaught TypeError: Can ...
- 关于html标签的两种隐藏方式
做一个文章管理模块 有一个功能是需要根据文章分类来显示内容的标签 刚开始以为很简单 ,手放键盘上就是一顿敲. 如果类型是文章就是没问题 可是另外几种就有问题了 红框的标签一直不出来 后来找了半天然来 ...
- js判断是否是大小写,数字等方法
function isEmail(str){ var regu = "^(([0-9a-zA-Z]+)|([0-9a-zA-Z]+[_.0-9a-zA-Z-]*))@([a-zA-Z0-9- ...
- 二十六、MySQL 临时表
MySQL 临时表 MySQL 临时表在我们需要保存一些临时数据时是非常有用的.临时表只在当前连接可见,当关闭连接时,Mysql会自动删除表并释放所有空间. 临时表在MySQL 3.23版本中添加,如 ...
- shell数组脚本
#!/bin/bash array=( ) ;i<${#array[*]};i++)) do echo ${array[i]} done 脚本2 #!/bin/bash array=( ) fo ...