ACM的数学基础
懒得整理了,请勿往下看。
(一)欧拉函数
设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。有如下一些性质:
(1)欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。
(2)特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。欧拉函数值总是为偶数(除了特殊情况)。
(3)若n为质数则φ(n)=n-1。
(4)若n=pk,φ(n) = pk - p(k-1) = (p-1)*p(k-1),因为除了p的倍数外,其他数都跟n互质。
(5)φ函数值的通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)*…..*(1-1/pn),其中p1, p2……pn为x的所有质因数,且x>=2。特殊情况 φ(1)=1。 (注意:每种质因数只需要一个。
比如12=2*2*3那么φ(12)= 12*(1-1/2)*(1-1/3)=4,因为1,5,7,11均和12互质。比如φ(8)=4,因为1,3,5,7均和8互质。
(二)欧拉定理
若n与a互质,且皆为正整数,则。
(三)乘法逆元
定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。
(1)为什么要有乘法逆元呢?
答:当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。
定理:a存在模p的乘法逆元的充要条件是gcd(a,p) = 1
(2)如何求解 (a/b) mod p 的结果?
答:我们可以通过求b关于p的乘法逆元k,将a乘上k再模p( 即ans=(a*k)%p,这样就比较好算了 )。其结果与 (a/b) % p 等价。
(3)如何证明?
证明:
根据b*k≡1 (mod p)有b*k=p*x+1,那么k=(p*x+1)/b。
把k代入(a*k) mod p,得:
(a*(p*x+1)/b) mod p
=((a*p*x)/b+a/b) mod p
=[((a*p*x)/b) mod p +(a/b)] mod p
=[(p*(a*x)/b) mod p +(a/b)] mod p
//注:p*[(a*x)/b] mod p=0,因为既然要取模,a/b的结果肯定是为正整数。
所以原式等于:(a/b) mod p
证毕!
补:还有一条公式也是用于求模用的:
(ans表示我们要求的结果,且无需考虑所有数字的特殊性)
ACM的数学基础的更多相关文章
- ACM失败之路
校赛打完,已过四月,该是准备背起行囊,踏上考研之路了,自然,得先阔别一下ACM了,想起这几年ACM路,感慨颇多,不得不一诉心肠,与大家分享一下我的ACM历程,如果有人能从此文获取一些益处,那我就很欣慰 ...
- ACM起步要点总结(转哈工大)
首先,我想说的就是,我是一个很普通的ACMer,高中没有参加过任何计算机和数学竞赛的经历,也没有ben那样过人的天资,努力至今也未能取得什么成绩,我之所以写下这篇文章,只是希望给刚进大学或者刚进ACM ...
- 2013 ACM网络搜索与数据挖掘国际会议
ACM网络搜索与数据挖掘国际会议" title="2013 ACM网络搜索与数据挖掘国际会议"> 编者按:ACM网络搜索与数据挖掘国际会议(6th ACM Conf ...
- SCNU ACM 2016新生赛决赛 解题报告
新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...
- SCNU ACM 2016新生赛初赛 解题报告
新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...
- acm结束了
最后一场比赛打完了.之前为了记录一些题目,开了这个博客,现在结束了acm,这个博客之后也不再更新了. 大家继续加油!
- 关于ACM的总结
看了不少大神的退役帖,今天终于要本弱装一波逼祭奠一下我关于ACM的回忆. 从大二上开始接触到大三下结束,接近两年的时间,对于大神们来说两年的确算不上时间,然而对于本弱来说就是大学的一半时光.大一的懵懂 ...
- 第一届山东省ACM——Phone Number(java)
Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...
- 第一届山东省ACM——Balloons(java)
Description Both Saya and Kudo like balloons. One day, they heard that in the central park, there wi ...
随机推荐
- Android图片压缩框架-Tiny 集成
为了简化对图片压缩的调用,提供最简洁与合理的api压缩逻辑,对于压缩为Bitmap根据屏幕分辨率动态适配最佳大小,对于压缩为File优化底层libjpeg的压缩,整个图片压缩过程全在压缩线程池中异步压 ...
- codeforces986F Oppa Funcan Style Remastered【线性筛+最短路】
容易看出是用质因数凑n 首先01个因数的情况可以特判,2个的情况就是ap1+bp2=n,b=n/p2(mod p1),这里的b是最小的特解,求出来看bp2<=n则有解,否则无解 然后剩下的情况最 ...
- Apache为本地主机配置多个网站根目录详解
Author:KillerLegend Date:2014.5.27 From:http://blog.csdn.net/killerlegend/article/details/27195445 - ...
- 笔记-JavaWeb学习之旅18
AJAX:ASynchronous JavaScript And XML 异步的JavaScript 和XML 异步和同步:客户端和服务器端相互通信的基础上 同步:客户端操作后必须等待服务器端的响应, ...
- 洛谷 P2895 [USACO08FEB]流星雨Meteor Shower 解题报告
一起来看流星雨吧(话说我还没看到过流星雨呢) 题目 Problem 小A则听说另一个骇人听闻的消息: 一场流星雨即将袭击整个霸中,由于流星体积过大,它们无法在撞击到地面前燃烧殆尽,届时将会对它撞到的一 ...
- day7计算作业详解
1.day7题目 1.判断一个数是否是水仙花数, 水仙花数是一个三位数, 三位数的每一位的三次方的和还等于这个数. 那这个数就是一个水仙花数, 例如: 153 = 13 + 53 + 3**3 2.给 ...
- background-attachment:fixed不兼容性
ios系统和某些移动端background-attachment:fixed不兼容性,没有任何效果,但可以hack一下就可以了,代码如下: ps:想在哪个标签加背景,可以在它class后:before ...
- C++文件操作方法小结
- 获取文件句柄 - fopen, fclose fopen(filename, opentype): 按照opentype的方式打开指定文件,打开失败返回NULL,否则返回文件句柄. 打开类型的属性 ...
- Codeforces 161E(搜索)
要点 标签是dp但搜索一发就能过了. 因为是对称矩阵所以试填一下就是一个外层都填满了,因此搜索的深度其实不超过5. 显然要预处理有哪些素数.在这个过程中可以顺便再处理出一个\(vector:re[le ...
- Angular2.0的学习(一)
第一节课 1.Angular程序架构 2.搭建Angular开发环境 3.开发在线竞拍程序Auction的第一个版本