懒得整理了,请勿往下看。

   (一)欧拉函数

  设n为正整数,以φ(n)表示不超过n且与n互素的正整数的个数,称为n的欧拉函数值,这里函数φ:N→N,n→φ(n)称为欧拉函数。有如下一些性质:

  (1)欧拉函数是积性函数——若m,n互质,φ(mn)=φ(m)φ(n)。

  (2)特殊性质:当n为奇数时,φ(2n)=φ(n), 证明与上述类似。欧拉函数值总是为偶数(除了特殊情况)。

  (3)若n为质数则φ(n)=n-1。

  (4)若n=pk,φ(n) = p- p(k-1) = (p-1)*p(k-1),因为除了p的倍数外,其他数都跟n互质。

  (5)φ函数值的通式:φ(x)=x*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)*…..*(1-1/pn),其中p1, p2……pn为x的所有质因数,且x>=2。特殊情况 φ(1)=1。 (注意:每种质因数只需要一个。

  比如12=2*2*3那么φ(12)= 12*(1-1/2)*(1-1/3)=4,因为1,5,7,11均和12互质。比如φ(8)=4,因为1,3,5,7均和8互质。

   (二)欧拉定理

    若n与a互质,且皆为正整数,则

   (三)乘法逆元

   定义:满足a*k≡1 (mod p)的k值就是a关于p的乘法逆元。

  (1)为什么要有乘法逆元呢?

   答:当我们要求(a/b) mod p的值,且a很大,无法直接求得a/b的值时,我们就要用到乘法逆元。

   定理:a存在模p的乘法逆元的充要条件是gcd(a,p) = 1

  (2)如何求解 (a/b) mod p 的结果?

   答:我们可以通过求b关于p的乘法逆元k,将a乘上k再模p( 即ans=(a*k)%p,这样就比较好算了 )。其结果与 (a/b) % p 等价。

  (3)如何证明?

  证明:
    根据b*k≡1 (mod p)有b*k=p*x+1,那么k=(p*x+1)/b。
    把k代入(a*k) mod p,得:
      (a*(p*x+1)/b) mod p
    =((a*p*x)/b+a/b) mod p
    =[((a*p*x)/b) mod p +(a/b)] mod p
    =[(p*(a*x)/b) mod p +(a/b)] mod p
    //注:p*[(a*x)/b] mod p=0,因为既然要取模,a/b的结果肯定是为正整数。
    所以原式等于:(a/b) mod p 

  证毕!

  补:还有一条公式也是用于求模用的:

        (ans表示我们要求的结果,且无需考虑所有数字的特殊性)

ACM的数学基础的更多相关文章

  1. ACM失败之路

    校赛打完,已过四月,该是准备背起行囊,踏上考研之路了,自然,得先阔别一下ACM了,想起这几年ACM路,感慨颇多,不得不一诉心肠,与大家分享一下我的ACM历程,如果有人能从此文获取一些益处,那我就很欣慰 ...

  2. ACM起步要点总结(转哈工大)

    首先,我想说的就是,我是一个很普通的ACMer,高中没有参加过任何计算机和数学竞赛的经历,也没有ben那样过人的天资,努力至今也未能取得什么成绩,我之所以写下这篇文章,只是希望给刚进大学或者刚进ACM ...

  3. 2013 ACM网络搜索与数据挖掘国际会议

    ACM网络搜索与数据挖掘国际会议" title="2013 ACM网络搜索与数据挖掘国际会议"> 编者按:ACM网络搜索与数据挖掘国际会议(6th ACM Conf ...

  4. SCNU ACM 2016新生赛决赛 解题报告

    新生初赛题目.解题思路.参考代码一览 A. 拒绝虐狗 Problem Description CZJ 去排队打饭的时候看到前面有几对情侣秀恩爱,作为单身狗的 CZJ 表示很难受. 现在给出一个字符串代 ...

  5. SCNU ACM 2016新生赛初赛 解题报告

    新生初赛题目.解题思路.参考代码一览 1001. 无聊的日常 Problem Description 两位小朋友小A和小B无聊时玩了个游戏,在限定时间内说出一排数字,那边说出的数大就赢,你的工作是帮他 ...

  6. acm结束了

    最后一场比赛打完了.之前为了记录一些题目,开了这个博客,现在结束了acm,这个博客之后也不再更新了. 大家继续加油!

  7. 关于ACM的总结

    看了不少大神的退役帖,今天终于要本弱装一波逼祭奠一下我关于ACM的回忆. 从大二上开始接触到大三下结束,接近两年的时间,对于大神们来说两年的确算不上时间,然而对于本弱来说就是大学的一半时光.大一的懵懂 ...

  8. 第一届山东省ACM——Phone Number(java)

    Description We know that if a phone number A is another phone number B’s prefix, B is not able to be ...

  9. 第一届山东省ACM——Balloons(java)

    Description Both Saya and Kudo like balloons. One day, they heard that in the central park, there wi ...

随机推荐

  1. Android图片压缩框架-Tiny 集成

    为了简化对图片压缩的调用,提供最简洁与合理的api压缩逻辑,对于压缩为Bitmap根据屏幕分辨率动态适配最佳大小,对于压缩为File优化底层libjpeg的压缩,整个图片压缩过程全在压缩线程池中异步压 ...

  2. codeforces986F Oppa Funcan Style Remastered【线性筛+最短路】

    容易看出是用质因数凑n 首先01个因数的情况可以特判,2个的情况就是ap1+bp2=n,b=n/p2(mod p1),这里的b是最小的特解,求出来看bp2<=n则有解,否则无解 然后剩下的情况最 ...

  3. Apache为本地主机配置多个网站根目录详解

    Author:KillerLegend Date:2014.5.27 From:http://blog.csdn.net/killerlegend/article/details/27195445 - ...

  4. 笔记-JavaWeb学习之旅18

    AJAX:ASynchronous JavaScript And XML 异步的JavaScript 和XML 异步和同步:客户端和服务器端相互通信的基础上 同步:客户端操作后必须等待服务器端的响应, ...

  5. 洛谷 P2895 [USACO08FEB]流星雨Meteor Shower 解题报告

    一起来看流星雨吧(话说我还没看到过流星雨呢) 题目 Problem 小A则听说另一个骇人听闻的消息: 一场流星雨即将袭击整个霸中,由于流星体积过大,它们无法在撞击到地面前燃烧殆尽,届时将会对它撞到的一 ...

  6. day7计算作业详解

    1.day7题目 1.判断一个数是否是水仙花数, 水仙花数是一个三位数, 三位数的每一位的三次方的和还等于这个数. 那这个数就是一个水仙花数, 例如: 153 = 13 + 53 + 3**3 2.给 ...

  7. background-attachment:fixed不兼容性

    ios系统和某些移动端background-attachment:fixed不兼容性,没有任何效果,但可以hack一下就可以了,代码如下: ps:想在哪个标签加背景,可以在它class后:before ...

  8. C++文件操作方法小结

    - 获取文件句柄 - fopen, fclose fopen(filename, opentype): 按照opentype的方式打开指定文件,打开失败返回NULL,否则返回文件句柄. 打开类型的属性 ...

  9. Codeforces 161E(搜索)

    要点 标签是dp但搜索一发就能过了. 因为是对称矩阵所以试填一下就是一个外层都填满了,因此搜索的深度其实不超过5. 显然要预处理有哪些素数.在这个过程中可以顺便再处理出一个\(vector:re[le ...

  10. Angular2.0的学习(一)

    第一节课 1.Angular程序架构 2.搭建Angular开发环境 3.开发在线竞拍程序Auction的第一个版本