KNN算法:

目的是分类,具体过程为,先训练,这个训练我估计只是对训练数据进行一个存储,knn测试的过程是根据测试样例找出与这个样例的距离最近的k个点,看这k个点中哪个分类所占的比例比较多,那么这个样例就属于这个分类。所以我们要做的就是确定这个k,这个k是个超参数,所以需要手动测试。

具体使用方式为

1 knn = cv.KNearest()
2
3 knn.train(train_datas,train_labels)
4
5 ret,result,neighbours,dist = knn.find_nearest(test,k=5)

SVM算法:

支持向量机的目的是拟合出一条决策边界,使得边界两端的数据可以被分开从而得到分类的目的,训练的目的就是得到支持向量,支持向量是用来划定边界的,具体我也讲不清楚,但大致是理解的。

使用方法大致如下

 1 svm_params = dict( kernel_type = cv2.SVM_LINEAR,
 2
 3                     svm_type = cv2.SVM_C_SVC,
 4
 5                     C=2.67, gamma=5.383 )
 6
 7 svm = cv.SVM()
 8
 9 svm.train(train_data,responses,svm_params)
10
11 svm.save("svm_data.dat")
12
13 result = svm.predict_all(test)

要提到的就是这里kernel_type、svm_type、C、gamma

C: 目标函数的惩罚系数C,用来平衡分类间隔margin和错分样本的,default C = 1.0;

kernel:参数选择有RBF, Linear, Poly, Sigmoid, 默认的是”RBF”;

gamma:核函数的系数(‘Poly’, ‘RBF’ and ‘Sigmoid’), 默认是gamma = 1 / n_features;

svm_type 这里用的SVC就是分类

K-Means算法:

假设你要将数据分为2组,那么算法会随机选择两个中心C1和C2,计算每个点到两个中心的距离,如果更接近C1,就标记为0,接近C2,就标记为1,如果更多分组就标记为2、3等等,然后计算所有被标记为0的向量的平均值,用这个平均值作为新的中心,同理标记为1的也是,如此往复,直到两个中心点收敛到固定点,或者我们设定最大迭代次数或达到特定的精度停止,最终会让这些数据点与其对应的之心之间的距离之和最小。

下面是具体使用方法

1 criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER,10,1.0)
2 flags = cv.KMEANS_RANDOM_CENTERS
3 compactness,labels,centers = cv.kmeans(z,2,None,criteria,10,flags)

输入的参数依此为

1. samples   np.float32类型的训练数据

2. nclusters(K) 需要分类的数目

3. critria 满足终止的条件,满足这个条件,就停止迭代

第一个参数

cv.TERM_CRITERIA_EPS - 达到精度epsilon就停止迭代

cv.TERM_CRITERIA_MAX_ITER - 达到最大迭代次数max_iter就停止迭代

cv.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER - 满足上述任何条件停止迭代

第二个参数

max_iter - 最大迭代次数

第三个参数

epsilon - 要求的精度

4. attempts:  使用flag指定的算法初始执行算法的次数,估计是通过多次初始化得到一个准确值。

5. flags : 指定初始的中心点的方式,通常又两种方式,cv.KMEANS_PP_CENTERS和cv.KMEANS_RANDOM_CENTERS

返回的参数为

1.compactness : 每个点到其相应中心的平方距离之和

2. labels :  标签数组,其中每个元素标记为0、1、2等等

3. centers :  各组集群的中心

[CV笔记]OpenCV机器学习笔记的更多相关文章

  1. 《Mastering Opencv ...读书笔记系列》车牌识别(II)

    http://blog.csdn.net/jinshengtao/article/details/17954427   <Mastering Opencv ...读书笔记系列>车牌识别(I ...

  2. OpenCV 学习笔记 07 目标检测与识别

    目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV ...

  3. OpenCV开发笔记(六十五):红胖子8分钟带你深入了解ORB特征点(图文并茂+浅显易懂+程序源码)

    若该文为原创文章,未经允许不得转载原博主博客地址:https://blog.csdn.net/qq21497936原博主博客导航:https://blog.csdn.net/qq21497936/ar ...

  4. opencv学习笔记(六)直方图比较图片相似度

    opencv学习笔记(六)直方图比较图片相似度 opencv提供了API来比较图片的相似程度,使我们很简单的就能对2个图片进行比较,这就是直方图的比较,直方图英文是histogram, 原理就是就是将 ...

  5. opencv学习笔记(五)镜像对称

    opencv学习笔记(五)镜像对称 设图像的宽度为width,长度为height.(x,y)为变换后的坐标,(x0,y0)为原图像的坐标. 水平镜像变换: 代码实现: #include <ios ...

  6. opencv学习笔记(四)投影

    opencv学习笔记(四)投影 任选了一张图片用于测试,图片如下所示: #include <cv.h> #include <highgui.h> using namespace ...

  7. opencv学习笔记(二)寻找轮廓

    opencv学习笔记(二)寻找轮廓 opencv中使用findContours函数来查找轮廓,这个函数的原型为: void findContours(InputOutputArray image, O ...

  8. (转) OpenCV学习笔记大集锦 与 图像视觉博客资源2之MIT斯坦福CMU

          首页 视界智尚 算法技术 每日技术 来打我呀 注册     OpenCV学习笔记大集锦 整理了我所了解的有关OpenCV的学习笔记.原理分析.使用例程等相关的博文.排序不分先后,随机整理的 ...

  9. 《Mastering Opencv ...读书笔记系列》车牌识别(I)

    http://blog.csdn.net/jinshengtao/article/details/17883075/  <Mastering Opencv ...读书笔记系列>车牌识别(I ...

随机推荐

  1. javascript数组对象

    constructor属性 返回数组对象原型 var arr = [1,2,3,4,5]; arr.constructor //输出 function Array() { [native code] ...

  2. ListView Item 里多种点击事件的用法

    思路:由于item里需要处理多种点击事件,所以不便于用listview的onItemClickListener,  需要在adapter里进行设置不同点击区域的onclicklistener 但是,有 ...

  3. 小a和uim之大逃离(luogu P1373 dp)

    小a和uim之大逃离(luogu P1373 dp) 给你一个n*m的矩阵,其中元素的值在1~k内.限制只能往下和往右走,问从任意点出发,到任意点结束,且经过了偶数个元素的合法路径有多少个.在此题中, ...

  4. codevs1074 食物链

    1074 食物链 2001年NOI全国竞赛  时间限制: 3 s  空间限制: 64000 KB  题目等级 : 钻石 Diamond 题解    

  5. SequoiaDB培训视频

    很久之前录制的SequoiaDB培训视频,现在都放上百度云盘了,感兴趣的同学可以看看. 第一讲:图形界面-安装前准备 链接: https://pan.baidu.com/s/1d2B3qUYqtKrE ...

  6. 7.Python初窥门径(数据类型补充,操作及注意事项)

    python(数据类型补充,转换及注意事项) 数据类型补充 str str.capitalize() 首字母大写 str.title() 每个单词首字母大写 str.count() 统计元素在str中 ...

  7. Ubuntu英文版中无法输入中文标点符号的问题

    问题: 不管是中文还是英文输入法,输入的标点符号都是英文的 解决方法: ctrl + .  进行切换,一个是lation 符号,一个是全角符号

  8. EOS 插件依赖关系

    EOS version: 1.0.5 update: 2018-06-19   EOS插件之间会有一个相互调用与依赖的关系,下面有一张个人画的一张草图,包含了此版本EOS所有插件相互之间的依赖关系,如 ...

  9. Codeforces Round #562 (Div. 2) B. Pairs

    链接:https://codeforces.com/contest/1169/problem/B 题意: Toad Ivan has mm pairs of integers, each intege ...

  10. HDU 1027 G - Can you answer these queries?

    http://acm.hdu.edu.cn/showproblem.php?pid=4027 Can you answer these queries? Time Limit: 4000/2000 M ...