multiple r squared

adjusted r squared

http://web.maths.unsw.edu.au/~adelle/Garvan/Assays/GoodnessOfFit.html

Goodness-of-Fit Statistics

Sum of Squares Due to Error

This statistic measures the total deviation of the response values from the fit to the response values. It is also called the summed square of residuals and is usually labelled as SSE.

      SSE = Sum

(i=1 to n)

      {

wi 

      (

yi - fi

      )

2

    }

Here yi is the observed data value and fi is the predicted value from the fit. wi is the weighting applied to each data point, usually wi = 1.

A value closer to 0 indicates that the model has a smaller random error component, and that the fit will be more useful for prediction.

R-Square

This statistic measures how successful the fit is in explaining the variation of the data. Put another way, R-square is the square of the correlation between the response values and the predicted response values. It is also called the square of the multiple correlation coefficient and the coefficient of multiple determination.

R-square is defined as

      R-square = 1 - [Sum

(i=1 to n)

      {

wi

      (

y- fi

      )

2

      }] /[Sum

(i=1 to n)

      {

wi

      (

yi - yav

      )

2

    }] = 1 - SSE/SST

Here fi is the predicted value from the fit, yav is the mean of the observed data yi is the observed data value. wi is the weighting applied to each data point, usually wi=1. SSE is the sum of squares due to error and SST is the total sum of squares.

R-square can take on any value between 0 and 1, with a value closer to 1 indicating that a greater proportion of variance is accounted for by the model. For example, an R-square value of 0.8234 means that the fit explains 82.34% of the total variation in the data about the average.

If you increase the number of fitted coefficients in your model, R-square will increase although the fit may not improve in a practical sense. To avoid this situation, you should use the degrees of freedom adjusted R-square statistic described below.

Note that it is possible to get a negative R-square for equations that do not contain a constant term. Because R-square is defined as the proportion of variance explained by the fit, if the fit is actually worse than just fitting a horizontal line then R-square is negative. In this case, R-square cannot be interpreted as the square of a correlation. Such situations indicate that a constant term should be added to the model.

Degrees of Freedom Adjusted R-Square

This statistic uses the R-square statistic defined above, and adjusts it based on the residual degrees of freedom. The residual degrees of freedom is defined as the number of response values nminus the number of fitted coefficients m estimated from the response values.

v = n-m

v indicates the number of independent pieces of information involving the n data points that are required to calculate the sum of squares. Note that if parameters are bounded and one or more of the estimates are at their bounds, then those estimates are regarded as fixed. The degrees of freedom is increased by the number of such parameters.

The adjusted R-square statistic is generally the best indicator of the fit quality when you compare two models that are nested – that is, a series of models each of which adds additional coefficients to the previous model.

      adjusted R-square = 1 - SSE(

n

      -1)/SST(

v

    )

The adjusted R-square statistic can take on any value less than or equal to 1, with a value closer to 1 indicating a better fit. Negative values can occur when the model contains terms that do not help to predict the response.

Root Mean Squared Error

This statistic is also known as the fit standard error and the standard error of the regression. It is an estimate of the standard deviation of the random component in the data, and is defined as

      RMSE =

 s

      = (MSE)

½

where MSE is the mean square error or the residual mean square

      MSE=SSE/

v

Just as with SSE, an MSE value closer to 0 indicates a fit that is more useful for prediction.

r squared的更多相关文章

  1. 机器学习:衡量线性回归法的指标(MSE、RMSE、MAE、R Squared)

    一.MSE.RMSE.MAE 思路:测试数据集中的点,距离模型的平均距离越小,该模型越精确 # 注:使用平均距离,而不是所有测试样本的距离和,因为距离和受样本数量的影响 1)公式: MSE:均方误差 ...

  2. 线性函数拟合R语言示例

    线性函数拟合(y=a+bx) 1.       R运行实例 R语言运行代码如下:绿色为要提供的数据,黄色标识信息为需要保存的. x<-c(0.10,0.11, 0.12, 0.13, 0.14, ...

  3. R语言︱非结构化数据处理神器——rlist包

    本文作者:任坤,厦门大学王亚南经济研究院金融硕士生,研究兴趣为计算统计和金融量化交易,pipeR,learnR,rlist等项目的作者. 近年来,非关系型数据逐渐获得了更广泛的关注和使用.下面分别列举 ...

  4. R语言命令汇总

    > qqplot(spear,fastrankweight)> qqplot(spear,fastrankweight,main="title")> qqplot ...

  5. R ggplot2 线性回归

    摘自  http://f.dataguru.cn/thread-278300-1-1.html library(ggplot2) x=1:10y=rnorm(10)a=data.frame(x= x, ...

  6. r语言与dataframe

    什么是DataFrame 引用 r-tutor上的定义: DataFrame 是一个表格或者类似二维数组的结构,它的各行表示一个实例,各列表示一个变量. 没错,DataFrame就是类似于Excel表 ...

  7. R语言学习笔记(二十四):plyr包的用法

    plyr 这个包,提供了一组规范的数据结构转换形式. Input/Output list data frame array list llply() ldply() laply() data fram ...

  8. a note of R software write Function

    Functionals “To become significantly more reliable, code must become more transparent. In particular ...

  9. Advanced R之构造子集

    转发请声明出处:http://www.cnblogs.com/lizichao/p/4794733.html 构造子集 R构造子集的操作功能强大而且速度快.精通构造子集者可以用简洁的方式表达复杂的操作 ...

随机推荐

  1. 标准C程序设计七---112

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  2. 标准C程序设计七---107

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  3. 安装phpssdb扩展:

    安装 igbinary   扩展(安装phpssdb扩展时候要用到--enable-ssdb-igbinary): clone  https://github.com/igbinary/igbinar ...

  4. java string中indexOf()常用用法

    Java中字符串中子串的查找共有四种方法,如下: 1.int indexOf(String str) :返回第一次出现的指定子字符串在此字符串中的索引. 2.int indexOf(String st ...

  5. LeetCode OJ——Word Break

    http://oj.leetcode.com/problems/word-break/ 动态规划题目,重点是建立出模型来: fun(start,end) = fun(start,i)*fun(i+1, ...

  6. HDU 4912 Paths on the tree(LCA+贪心)

    题目链接 Paths on the tree 来源  2014 多校联合训练第5场 Problem B 题意就是给出m条树上的路径,让你求出可以同时选择的互不相交的路径最大数目. 我们先求出每一条路径 ...

  7. Codeforces 620E New Year Tree(线段树+位运算)

    题目链接 New Year Tree 考虑到$ck <= 60$,那么用位运算统计颜色种数 对于每个点,重新标号并算出他对应的进和出的时间,然后区间更新+查询. 用线段树来维护. #includ ...

  8. 证书锁定Certificate Pinning技术

    证书锁定Certificate Pinning技术   在中间人攻击中,攻击主机通常截断客户端和服务器的加密通信.攻击机以自己的证书替代服务器发给客户端的证书.通常,客户端不会验证该证书,直接接受该证 ...

  9. jenkins的Pipeline代码流水线管理

    1.新建一个pipline任务 2.自写一个简单的pipline脚本 a.Pipeline的脚本语法在Pipeline Syntax中,片段生成器,示例步骤中选择builf:Build a job b ...

  10. PyTorch学习笔记之Variable_and_function_cat

    application 1 from torch.autograd import Variable import torch b = Variable(torch.FloatTensor([64, 1 ...