(转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work
转自:https://github.com/soumith/ganhacks
While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.
Here are a summary of some of the tricks.
Here's a link to the authors of this document
If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.
1. Normalize the inputs
- normalize the images between -1 and 1
- Tanh as the last layer of the generator output
2: A modified loss function
In GAN papers, the loss function to optimize G is min (log 1-D)
, but in practice folks practically use max log D
- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)
In practice, works well:
- Flip labels when training generator: real = fake, fake = real
3: Use a spherical Z
- Dont sample from a Uniform distribution
- Sample from a gaussian distribution
- When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks has more details
4: BatchNorm
- Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
- when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).
5: Avoid Sparse Gradients: ReLU, MaxPool
- the stability of the GAN game suffers if you have sparse gradients
- LeakyReLU = good (in both G and D)
- For Downsampling, use: Average Pooling, Conv2d + stride
- For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158
6: Use Soft and Noisy Labels
- Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
- Salimans et. al. 2016
- make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
7: DCGAN / Hybrid Models
- Use DCGAN when you can. It works!
- if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN
8: Use stability tricks from RL
- Experience Replay
- Keep a replay buffer of past generations and occassionally show them
- Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
- All stability tricks that work for deep deterministic policy gradients
- See Pfau & Vinyals (2016)
9: Use the ADAM Optimizer
- optim.Adam rules!
- See Radford et. al. 2015
- Use SGD for discriminator and ADAM for generator
10: Track failures early
- D loss goes to 0: failure mode
- check norms of gradients: if they are over 100 things are screwing up
- when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
- if loss of generator steadily decreases, then it's fooling D with garbage (says martin)
11: Dont balance loss via statistics (unless you have a good reason to)
- Dont try to find a (number of G / number of D) schedule to uncollapse training
- It's hard and we've all tried it.
- If you do try it, have a principled approach to it, rather than intuition
For example
while lossD > A:
train D
while lossG > B:
train G
12: If you have labels, use them
- if you have labels available, training the discriminator to also classify the samples: auxillary GANs
13: Add noise to inputs, decay over time
- Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)
- adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAI code also has it (commented out)
14: [notsure] Train discriminator more (sometimes)
- especially when you have noise
- hard to find a schedule of number of D iterations vs G iterations
15: [notsure] Batch Discrimination
- Mixed results
16: Discrete variables in Conditional GANs
- Use an Embedding layer
- Add as additional channels to images
- Keep embedding dimensionality low and upsample to match image channel size
Authors
- Soumith Chintala
- Emily Denton
- Martin Arjovsky
- Michael Mathieu
(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- Android Studio tips and tricks 翻译学习
Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...
- Tips and Tricks for Debugging in chrome
Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...
- [转]Tips——Chrome DevTools - 25 Tips and Tricks
Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...
- Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks
原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...
- 10 Essential TypeScript Tips And Tricks For Angular Devs
原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...
- WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks
What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...
- C++ Tips and Tricks
整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...
随机推荐
- 整合了一个功能强大完善的OA系统源码,php全开源 界面漂亮美观
整合了一个功能强大完善的OA系统源码,php全开源界面漂亮美观.需要的同学联系Q:930948049
- iOS推送生成服务器端p12文件
生成服务器端推送p12文件 所需文件:A.开发证书 aps_production.cer B.本地导出的私钥 : aps_production.p12 C.生成证书时用到的请求文件:Push.c ...
- java并发包:线程池 executorservice
1.newCachedThreadPool() -缓存型池子,先查看池中有没有以前建立的线程,如果有,就reuse.如果没有,就建一个新的线程加入池中 -缓存型池子通常用于执行一些生存期很短的异步型 ...
- Cordova学习(一) 环境搭建
一.什么是cordova Cordova提供了一组设备相关的API,通过这组API,移动应用能够以JavaScript访问原生的设备功能,如摄像头.麦克风等. Cordova还提供了一组统一的Java ...
- redis主从复制搭建
1. 安装redis-2.4.6-setup-32-bit.exe 2. 打开一个cmd窗口,使用cd命令切换到指定目录(F:\Redis) 运行 redis-server.exe redis.con ...
- android layout_weight讲解
Layout_weight是线性布局,也就是LinearLayout里面用到的,下面通过实验来看这个Layout_weight的特性. 1.当控件的属性android:layout_width=&qu ...
- Your build settings specify a provisioning profile with the UUID, no provisioning profile
在Archive项目时,出现了“Your build settings specify a provisioning profile with the UUID “”, however, no suc ...
- mysql 报错max_allowed_packet处理办法
首先打开mysql管理工具执行 SHOW VARIABLES LIKE '%max_allowed_packet%'; 看到如图所示的效果 max_allowed_packet 1024slav ...
- SQLAutoCode - error when attempting to generate schema
I'm trying to auto generate a schema for use in SQLalchemy, I'm using sqlautocode to do this, I use ...
- web设计中那些因素可能影响网站后期优化
web设计中那些因素可能影响网站后期优化. 1.网站代码的简洁实用性.网站源文件html代码.js代码.css代码等应尽可能的压缩处理.能用jquery-min.js的最好不要用jquery.js:c ...