(转) How to Train a GAN? Tips and tricks to make GANs work
How to Train a GAN? Tips and tricks to make GANs work
转自:https://github.com/soumith/ganhacks
While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.
Here are a summary of some of the tricks.
Here's a link to the authors of this document
If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.
1. Normalize the inputs
- normalize the images between -1 and 1
- Tanh as the last layer of the generator output
2: A modified loss function
In GAN papers, the loss function to optimize G is min (log 1-D)
, but in practice folks practically use max log D
- because the first formulation has vanishing gradients early on
- Goodfellow et. al (2014)
In practice, works well:
- Flip labels when training generator: real = fake, fake = real
3: Use a spherical Z
- Dont sample from a Uniform distribution
- Sample from a gaussian distribution
- When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
- Tom White's Sampling Generative Networks has more details
4: BatchNorm
- Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
- when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).
5: Avoid Sparse Gradients: ReLU, MaxPool
- the stability of the GAN game suffers if you have sparse gradients
- LeakyReLU = good (in both G and D)
- For Downsampling, use: Average Pooling, Conv2d + stride
- For Upsampling, use: PixelShuffle, ConvTranspose2d + stride
- PixelShuffle: https://arxiv.org/abs/1609.05158
6: Use Soft and Noisy Labels
- Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).
- Salimans et. al. 2016
- make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator
7: DCGAN / Hybrid Models
- Use DCGAN when you can. It works!
- if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN
8: Use stability tricks from RL
- Experience Replay
- Keep a replay buffer of past generations and occassionally show them
- Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
- All stability tricks that work for deep deterministic policy gradients
- See Pfau & Vinyals (2016)
9: Use the ADAM Optimizer
- optim.Adam rules!
- See Radford et. al. 2015
- Use SGD for discriminator and ADAM for generator
10: Track failures early
- D loss goes to 0: failure mode
- check norms of gradients: if they are over 100 things are screwing up
- when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
- if loss of generator steadily decreases, then it's fooling D with garbage (says martin)
11: Dont balance loss via statistics (unless you have a good reason to)
- Dont try to find a (number of G / number of D) schedule to uncollapse training
- It's hard and we've all tried it.
- If you do try it, have a principled approach to it, rather than intuition
For example
while lossD > A:
train D
while lossG > B:
train G
12: If you have labels, use them
- if you have labels available, training the discriminator to also classify the samples: auxillary GANs
13: Add noise to inputs, decay over time
- Add some artificial noise to inputs to D (Arjovsky et. al., Huszar, 2016)
- adding gaussian noise to every layer of generator (Zhao et. al. EBGAN)
- Improved GANs: OpenAI code also has it (commented out)
14: [notsure] Train discriminator more (sometimes)
- especially when you have noise
- hard to find a schedule of number of D iterations vs G iterations
15: [notsure] Batch Discrimination
- Mixed results
16: Discrete variables in Conditional GANs
- Use an Embedding layer
- Add as additional channels to images
- Keep embedding dimensionality low and upsample to match image channel size
Authors
- Soumith Chintala
- Emily Denton
- Martin Arjovsky
- Michael Mathieu
(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章
- Matlab tips and tricks
matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...
- LoadRunner AJAX TruClient协议Tips and Tricks
LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...
- Android Studio tips and tricks 翻译学习
Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...
- Tips and Tricks for Debugging in chrome
Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...
- [转]Tips——Chrome DevTools - 25 Tips and Tricks
Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...
- Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks
原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...
- 10 Essential TypeScript Tips And Tricks For Angular Devs
原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...
- WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks
What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...
- C++ Tips and Tricks
整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...
随机推荐
- AngularJs angular.identity和angular.noop详解
angular.identity 函数返回本身的第一个参数.这个函数一般用于函数风格. ----------以上是官网对该接口的说明,只能说这个文档写得也太二,让人完全看不懂.要理解它的用途,可直接看 ...
- http 请求详解大全
HTTP 100 Continue继续 101 Switching Protocols切换协议 200 OK正常 201 Created已创建 202 Accepted已接受 203 Non-Auth ...
- 第十章 嵌入式Linux的调试技术
对调试工具进行简介.Linux中提供了一类工具,通过这些工具可以逐行跟踪程序的代码,用于测试用户空间程序的gdb.gdbserver和调试内核空间程序的kgdb. 用gdb调试用户空间程序:gdb可跟 ...
- cocos2d-x创建项目
2.0之后的创建项目方法 第一步,首先 cd cocos2d-x-2.2.1/tools/project-creator/ 第二步, ./create_project.py -project Hell ...
- GridView导出Excel(中文乱码)
public void OUTEXCEL(string items,string where) { DataSet ds = new StudentBLL().GetTable(items,where ...
- 如何注册OCX控件
32位系统: 将文件放到c:\windows\system目录 注册 运行:Regsvr32 c:\windows\system\xxx.ocx 取消注册运行:Regsvr32.exe /u c:\w ...
- OC calendar 实践中的那些坑
博客已经迁移到www.chjsun.top 最近想做一个万年历似的东西,因为需要把农历也添加进去,就想直接调用苹果自带的api,这样还方便一些, 搜索了一下,苹果对于时间的处理,还是提供了很多选择给我 ...
- python27(32位)安装模块报错“error: Unable to find vcvarsall.bat”
1)首先,下载一个Microsoft Visual C++ Compiler for Python 2.7的补丁,下载地址在这里: http://www.microsoft.com/en-us/dow ...
- strlen 字符型数组和字符数组 sizeof和strlen的区别 cin.get(input,Arsize)
strlenstrlen所作的仅仅是一个计数器的工作,它从内存的某个位置(可以是字符串开头,中间某个位置,甚至是某个不确定的内存区域)开始扫描,直到碰到第一个字符串结束符'\0'为止,然后返回计数器值 ...
- U盘格式转换
有一次想把5G的文件拷到U盘里面,悲催的发现拷不进去,文件过大...... 硬盘格式:NTFS 把自己的U盘也改了格式后,就可以了