How to Train a GAN? Tips and tricks to make GANs work

转自:https://github.com/soumith/ganhacks

While research in Generative Adversarial Networks (GANs) continues to improve the fundamental stability of these models, we use a bunch of tricks to train them and make them stable day to day.

Here are a summary of some of the tricks.

Here's a link to the authors of this document

If you find a trick that is particularly useful in practice, please open a Pull Request to add it to the document. If we find it to be reasonable and verified, we will merge it in.

1. Normalize the inputs

  • normalize the images between -1 and 1
  • Tanh as the last layer of the generator output

2: A modified loss function

In GAN papers, the loss function to optimize G is min (log 1-D), but in practice folks practically use max log D

  • because the first formulation has vanishing gradients early on
  • Goodfellow et. al (2014)

In practice, works well:

  • Flip labels when training generator: real = fake, fake = real

3: Use a spherical Z

  • Dont sample from a Uniform distribution

  • Sample from a gaussian distribution

  • When doing interpolations, do the interpolation via a great circle, rather than a straight line from point A to point B
  • Tom White's Sampling Generative Networks has more details

4: BatchNorm

  • Construct different mini-batches for real and fake, i.e. each mini-batch needs to contain only all real images or all generated images.
  • when batchnorm is not an option use instance normalization (for each sample, subtract mean and divide by standard deviation).

5: Avoid Sparse Gradients: ReLU, MaxPool

  • the stability of the GAN game suffers if you have sparse gradients
  • LeakyReLU = good (in both G and D)
  • For Downsampling, use: Average Pooling, Conv2d + stride
  • For Upsampling, use: PixelShuffle, ConvTranspose2d + stride

6: Use Soft and Noisy Labels

  • Label Smoothing, i.e. if you have two target labels: Real=1 and Fake=0, then for each incoming sample, if it is real, then replace the label with a random number between 0.7 and 1.2, and if it is a fake sample, replace it with 0.0 and 0.3 (for example).

    • Salimans et. al. 2016
  • make the labels the noisy for the discriminator: occasionally flip the labels when training the discriminator

7: DCGAN / Hybrid Models

  • Use DCGAN when you can. It works!
  • if you cant use DCGANs and no model is stable, use a hybrid model : KL + GAN or VAE + GAN

8: Use stability tricks from RL

  • Experience Replay

    • Keep a replay buffer of past generations and occassionally show them
    • Keep checkpoints from the past of G and D and occassionaly swap them out for a few iterations
  • All stability tricks that work for deep deterministic policy gradients
  • See Pfau & Vinyals (2016)

9: Use the ADAM Optimizer

  • optim.Adam rules!

    • See Radford et. al. 2015
  • Use SGD for discriminator and ADAM for generator

10: Track failures early

  • D loss goes to 0: failure mode
  • check norms of gradients: if they are over 100 things are screwing up
  • when things are working, D loss has low variance and goes down over time vs having huge variance and spiking
  • if loss of generator steadily decreases, then it's fooling D with garbage (says martin)

11: Dont balance loss via statistics (unless you have a good reason to)

  • Dont try to find a (number of G / number of D) schedule to uncollapse training
  • It's hard and we've all tried it.
  • If you do try it, have a principled approach to it, rather than intuition

For example

while lossD > A:
train D
while lossG > B:
train G

12: If you have labels, use them

  • if you have labels available, training the discriminator to also classify the samples: auxillary GANs

13: Add noise to inputs, decay over time

14: [notsure] Train discriminator more (sometimes)

  • especially when you have noise
  • hard to find a schedule of number of D iterations vs G iterations

15: [notsure] Batch Discrimination

  • Mixed results

16: Discrete variables in Conditional GANs

  • Use an Embedding layer
  • Add as additional channels to images
  • Keep embedding dimensionality low and upsample to match image channel size

Authors

  • Soumith Chintala
  • Emily Denton
  • Martin Arjovsky
  • Michael Mathieu

(转) How to Train a GAN? Tips and tricks to make GANs work的更多相关文章

  1. Matlab tips and tricks

    matlab tips and tricks and ... page overview: I created this page as a vectorization helper but it g ...

  2. LoadRunner AJAX TruClient协议Tips and Tricks

    LoadRunner AJAX TruClient协议Tips and Trickshttp://automationqa.com/forum.php?mod=viewthread&tid=2 ...

  3. Android Studio tips and tricks 翻译学习

    Android Studio tips and tricks 翻译 这里是原文的链接. 正文: 如果你对Android Studio和IntelliJ不熟悉,本页提供了一些建议,让你可以从最常见的任务 ...

  4. Tips and Tricks for Debugging in chrome

    Tips and Tricks for Debugging in chrome Pretty print On sources panel ,clicking on the {} on the bot ...

  5. [转]Tips——Chrome DevTools - 25 Tips and Tricks

    Chrome DevTools - 25 Tips and Tricks 原文地址:https://www.keycdn.com/blog/chrome-devtools 如何打开? 1.从浏览器菜单 ...

  6. Nginx and PHP-FPM Configuration and Optimizing Tips and Tricks

    原文链接:http://www.if-not-true-then-false.com/2011/nginx-and-php-fpm-configuration-and-optimizing-tips- ...

  7. 10 Essential TypeScript Tips And Tricks For Angular Devs

    原文: https://www.sitepoint.com/10-essential-typescript-tips-tricks-angular/ ------------------------- ...

  8. WWDC笔记:2011 Session 125 UITableView Changes, Tips and Tricks

    What’s New Automatic Dimensions - (CGFloat)tableView:(UITableView *)tableView heightForHeaderInSect ...

  9. C++ Tips and Tricks

    整理了下在C++工程代码中遇到的技巧与建议. 0x00 巧用宏定义. 经常看见程序员用 enum 值,打印调试信息的时候又想打印数字对应的字符意思.见过有人写这样的代码 if(today == MON ...

随机推荐

  1. AngularJs angular.identity和angular.noop详解

    angular.identity 函数返回本身的第一个参数.这个函数一般用于函数风格. ----------以上是官网对该接口的说明,只能说这个文档写得也太二,让人完全看不懂.要理解它的用途,可直接看 ...

  2. http 请求详解大全

    HTTP 100 Continue继续 101 Switching Protocols切换协议 200 OK正常 201 Created已创建 202 Accepted已接受 203 Non-Auth ...

  3. 第十章 嵌入式Linux的调试技术

    对调试工具进行简介.Linux中提供了一类工具,通过这些工具可以逐行跟踪程序的代码,用于测试用户空间程序的gdb.gdbserver和调试内核空间程序的kgdb. 用gdb调试用户空间程序:gdb可跟 ...

  4. cocos2d-x创建项目

    2.0之后的创建项目方法 第一步,首先 cd cocos2d-x-2.2.1/tools/project-creator/ 第二步, ./create_project.py -project Hell ...

  5. GridView导出Excel(中文乱码)

    public void OUTEXCEL(string items,string where) { DataSet ds = new StudentBLL().GetTable(items,where ...

  6. 如何注册OCX控件

    32位系统: 将文件放到c:\windows\system目录 注册 运行:Regsvr32 c:\windows\system\xxx.ocx 取消注册运行:Regsvr32.exe /u c:\w ...

  7. OC calendar 实践中的那些坑

    博客已经迁移到www.chjsun.top 最近想做一个万年历似的东西,因为需要把农历也添加进去,就想直接调用苹果自带的api,这样还方便一些, 搜索了一下,苹果对于时间的处理,还是提供了很多选择给我 ...

  8. python27(32位)安装模块报错“error: Unable to find vcvarsall.bat”

    1)首先,下载一个Microsoft Visual C++ Compiler for Python 2.7的补丁,下载地址在这里: http://www.microsoft.com/en-us/dow ...

  9. strlen 字符型数组和字符数组 sizeof和strlen的区别 cin.get(input,Arsize)

    strlenstrlen所作的仅仅是一个计数器的工作,它从内存的某个位置(可以是字符串开头,中间某个位置,甚至是某个不确定的内存区域)开始扫描,直到碰到第一个字符串结束符'\0'为止,然后返回计数器值 ...

  10. U盘格式转换

    有一次想把5G的文件拷到U盘里面,悲催的发现拷不进去,文件过大...... 硬盘格式:NTFS 把自己的U盘也改了格式后,就可以了