Instant Complexity

Time Limit: 1000MS Memory Limit: 10000K

Description

Analyzing the run-time complexity of algorithms is an important tool for designing efficient programs that solve a problem. An algorithm that runs in linear time is usually much faster than an algorithm that takes quadratic time for the same task, and thus should be preferred.

Generally, one determines the run-time of an algorithm in relation to the `size’ n of the input, which could be the number of objects to be sorted, the number of points in a given polygon, and so on. Since determining a formula dependent on n for the run-time of an algorithm is no easy task, it would be great if this could be automated. Unfortunately, this is not possible in general, but in this problem we will consider programs of a very simple nature, for which it is possible. Our programs are built according to the following rules (given in BNF), where < number > can be any non-negative integer:

< Program > ::= “BEGIN” < Statementlist > “END”

< Statementlist > ::= < Statement > | < Statement > < Statementlist >

< Statement > ::= < LOOP-Statement > | < OP-Statement >

< LOOP-Statement > ::= < LOOP-Header > < Statementlist > “END”

< LOOP-Header > ::= “LOOP” < number > | “LOOP n”

< OP-Statement > ::= “OP” < number >

The run-time of such a program can be computed as follows: the execution of an OP-statement costs as many time-units as its parameter specifies. The statement list enclosed by a LOOP-statement is executed as many times as the parameter of the statement indicates, i.e., the given constant number of times, if a number is given, and n times, if n is given. The run-time of a statement list is the sum of the times of its constituent parts. The total run-time therefore generally depends on n.

Input

The input starts with a line containing the number k of programs in the input. Following this are k programs which are constructed according to the grammar given above. Whitespace and newlines can appear anywhere in a program, but not within the keywords BEGIN, END, LOOP and OP or in an integer value. The nesting depth of the LOOP-operators will be at most 10.

Output

For each program in the input, first output the number of the program, as shown in the sample output. Then output the run-time of the program in terms of n; this will be a polynomial of degree Y <= 10. Print the polynomial in the usual way, i.e., collect all terms, and print it in the form “Runtime = a*n^10+b*n^9+ … +i*n^2+ j*n+k”, where terms with zero coefficients are left out, and factors of 1 are not written. If the runtime is zero, just print “Runtime = 0”.

Output a blank line after each test case.

Sample Input

2
BEGIN
LOOP n
OP 4
LOOP 3
LOOP n
OP 1
END
OP 2
END
OP 1
END
OP 17
END BEGIN
OP 1997 LOOP n LOOP n OP 1 END END
END

Sample Output

Program #1

Runtime = 3*n^2+11*n+17

Program #2

Runtime = n^2+1997

Source

Southwestern European Regional Contest 1997

计算算法时间复杂度,注意处理LOOP = 0的时候。

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <string>
#include <queue>
#include <stack>
#include <vector>
#include <algorithm> using namespace std; typedef struct node
{
int x;
int m; node *next;
}Node; void Mult(Node *Head)
{
Node *p; p=Head; while(p)
{
p->m++;
p=p->next;
}
} void Mult(Node *Head,int ans)
{
Node *p; p = Head; while(p)
{
p->x*=ans; p=p->next;
}
} void Output(Node *Head)
{
Node *p; p=Head; bool flag=false; while(p)
{
if(flag)
{
printf("+");
}
if(p->m==0&&p->x)
{
printf("%d",p->x);
flag=true;
}
else if(p->m==1&&p->x)
{
if(p->x!=1)
printf("%d*n",p->x);
else
{
printf("n");
}
flag=true;
}
else if(p->m>1&&p->x)
{
if(p->x!=1)
printf("%d*n^%d",p->x,p->m);
else
{
printf("n^%d",p->m);
}
flag=true;
} p=p->next;
} if(!flag)
{
printf("0");
}
printf("\n");
} Node * Add(Node *Head,Node *ans)
{
Node *p,*q,*t; p = ans; while(p)
{
q = Head; while(q)
{
if(p->m==q->m)
{
q->x+=p->x; break;
}
else
{
q=q->next;
}
}
if(!q)
{
t=p->next; p->next = Head; Head = p; p = t ;
}
else
{
p=p->next;
}
}
return Head;
} Node * Qsort(Node *Head)
{
Node *p,*q,*t; p = Head; while(p)
{
t=p; q=p->next; while(q)
{
if(q->m==p->m)
{
p->x+=q->x; t->next = q->next; q=t->next;
}
else
{
t=t->next; q=q->next;
}
}
p=p->next;
} p =Head; while(p)
{
q=p->next;
while(q)
{
if(p->m<q->m)
{
swap(p->m,q->m);
swap(p->x,q->x);
}
q=q->next;
}
p=p->next;
} return Head;
}
int Trans(char *s)
{
int ans = 0; for(int i=0;s[i]!='\0';i++)
{
ans = ans*10+s[i]-'0';
}
return ans;
} Node * dfs()
{
Node *Head,*ans,*p; char str[110],c[110]; Head = NULL; while(1)
{
scanf("%s",str); if(str[0]=='L')
{
scanf("%s",c); int num = -1;
if(c[0]!='n')
{
num = Trans(c);
} ans = dfs(); if(num==-1)
{
Mult(ans);
}
else if(num!=0)
{
Mult(ans,num);
}
else
{
ans = NULL;
} Head = Add(Head,ans);
}
else if(str[0]=='O')
{
scanf("%s",c); int num = Trans(c); if(num==0)
{
continue;
} p = new Node; p->x = num; p->m = 0 ; p->next = NULL; Head = Add(Head,p);
}
else if(str[0]=='E')
{
break;
}
} return Head;
} int main()
{
char str[110]; int T; int z = 1; Node *Head; scanf("%d",&T); while(T--)
{ Head = NULL; while(scanf("%s",str)&&strcmp(str,"BEGIN")!=0); Head = dfs(); Qsort(Head); printf("Program #%d\n",z++); printf("Runtime = "); Output(Head); printf("\n"); } return 0;
} /*
11
BEGIN
LOOP n
OP 4
LOOP 3
LOOP n
OP 1
END
OP 2
END
OP 1
END
OP 17
END BEGIN
OP 1997 LOOP n LOOP n OP 1 END END
END BEGIN
LOOP 0 OP 17 END
END BEGIN
LOOP n OP 0 END
END BEGIN
OP 1 LOOP n LOOP n OP 3 LOOP n OP 2 END END END
END BEGIN
LOOP n OP 1
LOOP n OP 2
LOOP n OP 3
LOOP n OP 4
LOOP n OP 5
LOOP n OP 6
LOOP n OP 7
LOOP n OP 8
LOOP n OP 9
LOOP n OP 10
END END END END END
LOOP 17 LOOP n LOOP n OP 3 END END END
END END END END END
END BEGIN LOOP 1 LOOP 2 LOOP 3 OP 1 LOOP 4 LOOP 5 LOOP 6 LOOP 7 LOOP 8 OP 1
END END END END OP 2 END END END END OP 17 END BEGIN OP 1 OP 2 OP 3 OP 4 OP 5 OP 6 OP 7 OP 8 OP 9 OP 10 OP 11 OP 12 END BEGIN LOOP n LOOP n LOOP n LOOP n LOOP n LOOP n LOOP n LOOP n LOOP n LOOP n
OP 12345 END END END END END END END END END END END BEGIN OP
17
LOOP 2
LOOP n LOOP
2 OP 4 LOOP n OP 4
LOOP n OP 5 END END OP 4 END END END END BEGIN
OP 0 LOOP n LOOP
n OP 88 OP 0 LOOP n LOOP 0 OP 17 END END END END OP 0 LOOP n LOOP 3 OP 0 END
END OP 8
END Sample Output
Program #1
Runtime = 3*n^2+11*n+17 Program #2
Runtime = n^2+1997 Program #3
Runtime = 0 Program #4
Runtime = 0 Program #5
Runtime = 2*n^3+3*n^2+1 Program #6
Runtime = 10*n^10+9*n^9+8*n^8+58*n^7+6*n^6+5*n^5+4*n^4+3*n^3+2*n^2+n Program #7
Runtime = 40391 Program #8
Runtime = 78 Program #9
Runtime = 12345*n^10 Program #10
Runtime = 20*n^3+16*n^2+32*n+17 Program #11
Runtime = 88*n^2+8
*/

Instant Complexity - POJ1472的更多相关文章

  1. POJ 1472:Instant Complexity 模拟时间复杂度

    Instant Complexity Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1908   Accepted: 658 ...

  2. Instant Complexity(模拟,递归)

    Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 1535   Accepted: 529 Description Analyz ...

  3. POJ 1472 Instant Complexity 应该叫它编程题。。

    题目:http://poj.org/problem?id=1472 这个题目是分到“模拟题”一类的,我觉得模拟的成分比较少,主要考察编程能力.独立写完这个题特别兴奋...所以我必须好好说一说,独家哦. ...

  4. UVA 586 Instant Complexity

    给出一段程序,求运行时间. 现在只考虑一层LOOP,不妨用数组a[i]来表示n的i次方的系数.如果输入OP m,那么就在a[0]上加m,遇到END,就说明循环结束了,需要在系数上乘以循环次数.如果次数 ...

  5. 三部曲二(基本算法、动态规划、搜索)-1004-Instant Complexity

    Instant Complexity Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) ...

  6. poj1472[模拟题]

    Instant Complexity Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 2017   Accepted: 698 ...

  7. POJ题目细究

    acm之pku题目分类 对ACM有兴趣的同学们可以看看 DP:  1011   NTA                 简单题  1013   Great Equipment     简单题  102 ...

  8. 【转】POJ百道水题列表

    以下是poj百道水题,新手可以考虑从这里刷起 搜索1002 Fire Net1004 Anagrams by Stack1005 Jugs1008 Gnome Tetravex1091 Knight ...

  9. Instant Radiosity实现

    本来说等把课程作业做完再来弄这个,但是还是没有忍住,先做了,主要原因还是这个算法很容易实现.这个算法在1997年由Keller首次提出.虽然名字叫Instant Radiosity,但是它和Radio ...

随机推荐

  1. Source Insight 3.X 插件新loader发布

    [前言] 大约一年多没更新SI插件了,主要原因是我从SI换到了sublime,使用SI少了,插件也就停止更新了.不过看到园子里这么多网友的留言,觉得还是有必要更新一下,算是给还在用SI的朋友们一个交代 ...

  2. iOS UITableViewCell的"滑动出现多个按钮"

    本文授权转载,作者:@夏天是个大人了 前言: 本篇博客其实就是想介绍tableviewcell滑动的一些"事",昨天在逛github的时候看到的还挺有意思的三方库,简单用了一下感觉 ...

  3. pring — jdbc 配置文件的设置

    ---参考配置,  链接mysql 数据库 <!-- 1.配置数据源 --><bean id="dataSource" class="org.sprin ...

  4. 数据库连接池:Druid

    转自: http://www.cnblogs.com/windlaughing/p/3287501.html Java连接数据库方法概述 java.sql提供了一些接口和类,用于支持数据库增删改查等相 ...

  5. laravel 在windows中使用一键安装包步骤

    安装 PHP 注意一:Laravel 5.0 开始对 PHP 版本的要求是 >=5.4,Laravel 5.1 要求 PHP 版本 >=5.5.9,所以,建议大家尽量安装 5.5.x 的最 ...

  6. 一次性搞明白 service和factory区别

    原文链接 http://blog.thoughtram.io/angular/2015/07/07/service-vs-factory-once-and-for-all.html 等下,已经有一篇文 ...

  7. 移动BI来袭我们要做哪些准备?

    (了解更多商业智能行业资讯.商业智能BI解决方案.商业智能客户案例,请访问:http://www.powerbi.com.cn/service) 随着智能手机的发展,商业智能(BI)基础架构也扩展到移 ...

  8. 【转】Apache Digest验证

    Apache默认使用basic模块验证,都是明文传输,不太安全,所以本文使用Digest来验证,以提高安全性. 1.Apache配置: A.目录权限配置 Alias /nagios "/us ...

  9. iOS,视图相关

    1.移除视图的所以子视图 2.自定义视图(UIView) 3.处理悬浮窗口(类似微信视频),等比缩放 4.自定义前面视图(可以手写字) 5.图片拉伸的几种方式,计算文本占用空间大小 6.UILable ...

  10. 基于Java Mina 通信框架的JT/T809转发服务器设计

    Apache MINA 是 Apache 组织的一个开源项目,为开发高性能和高可用性的网络应用程序提供了非常便利的框架. 也是Java开发者的一个福利(.NET目前还没有类似封装的这么好的基础sock ...