bzoj1007[HNOI2008]水平可见直线
cycleke神说要用半平面交(其实他也用的凸包),把我吓了一跳,后来发现(看题解)其实可以先按斜率排序,再将最小的两条线入栈,如果其与栈顶元素的交点在上一个点的左边,则将栈顶元素出栈。这是一个开口向上的半凸包。
#include <cstdio>
#include <iostream>
#include <cstring>
#include <algorithm>
#include <cmath>
#define eps 1e-8
using namespace std;
struct node{
double a,b;
int xu;
}e[100005],st[100005];
int cnt,n,ans[100005];
int read()
{
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
bool cmp(node a,node b)
{
if (fabs(a.a-b.a)<eps) return a.b<b.b;
else return a.a<b.a;
}
double xl(node a,node b)
{
return (b.b-a.b)/(a.a-b.a);
}
void insert(node a)
{
while (cnt)
{
if(fabs(st[cnt].a-a.a)<eps)cnt--;
else if(cnt>1&&xl(a,st[cnt-1])<=xl(st[cnt],st[cnt-1]))
cnt--;
else break;
}
st[++cnt]=a;
}
void solve()
{
for (int i=1;i<=n;i++) insert(e[i]);
for (int i=1;i<=cnt;i++) ans[st[i].xu]=1;
for (int i=1;i<=n;i++) if (ans[i]) printf("%d ",i);
}
int main()
{
scanf("%d",&n);
for (int i=1;i<=n;i++)
{
e[i].a=read(),e[i].b=read();
e[i].xu=i;
}
sort(e+1,e+1+n,cmp);
solve();
}
代码速度感人,将就看吧
bzoj1007[HNOI2008]水平可见直线的更多相关文章
- [bzoj1007][HNOI2008]水平可见直线_单调栈
水平可见直线 bzoj-1007 HNOI-2008 题目大意:给你n条直线,为你从上往下看能看见多少跳直线. 注释:能看见一条直线,当且仅当这条直线上存在一条长度>0的线段使得这条线段上方没有 ...
- [bzoj1007][HNOI2008][水平可见直线] (斜率不等式)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- [BZOJ1007] [HNOI2008] 水平可见直线 (凸包)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线:L1:y=x ...
- BZOJ1007: [HNOI2008]水平可见直线(单调栈)
Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8638 Solved: 3327[Submit][Status][Discuss] Descripti ...
- BZOJ1007:[HNOI2008]水平可见直线(计算几何)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为 可见的,否则Li为被覆盖的. 例如,对于直线: L1:y ...
- bzoj1007: [HNOI2008]水平可见直线 单调栈维护凸壳
在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的.例如,对于直线:L1:y=x; L2:y=-x; L3 ...
- [BZOJ1007](HNOI2008)水平可见直线(半平面交习题)
Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见的,否则Li为被覆盖的. 例如,对于直线: ...
- bzoj1007 [HNOI2008]水平可见直线——单调栈
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1007 可以把直线按斜率从小到大排序,用单调栈维护,判断新直线与栈顶的交点和栈顶与它之前直线的 ...
- bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com
Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...
随机推荐
- 【转】一个新的UIButtonMessage 给NGUI,使用委托,自动选择Receiver提供的方法
http://blog.csdn.net/chiuan/article/details/9290651?utm_source=tuicool&utm_medium=referral 来分享一个 ...
- 贪吃蛇的java代码分析(三)
代码剖析 在上一篇文章中,我们完成了贪吃蛇部分代码的构造.回头审视我们写的代码与思路,会发现我们遗漏了一个重要的地方,那就是:贪吃蛇的自身移动.想必大家都知道,贪吃蛇自身是会自己移动的,并且会跟随你的 ...
- MySQL 一些查询语句及技巧
生成唯一随机数 # 非补0版本 SELECT FLOOR(100000 + RAND() * 899999) AS random_number FROM target_table WHERE &quo ...
- js window.onload 的一个验证
window.onload必须等到页面内包括图片的所有元素加载完毕后才能执行. 以下验证是否是图片加载完成后才执行 <img class="icon" id="ic ...
- Java 获取汉字拼音的方法
package lius.util; import java.io.Serializable; import java.util.ArrayList; public class JString ...
- sqlite数据库相关总结
1. sqlite是轻量型.关系型管理系统,是嵌入式的,占用资源低.可移植性强,比mySql处理速度快,现在主流的版本是sqlite3 2. sqlite中的数据类型有TEXT(字符串,采用UTF-8 ...
- mysql小结
1.使用密码登录mysql mysql -u root -p 2.查看所有的数据库 show databases; 3.创建数据库 create database <数据库名>; 4.创建 ...
- CXF Spring开发WebService,基于SOAP和REST方式 【转】
官网示例 http://cxf.apache.org/docs/writing-a-service-with-spring.html http://cxf.apache.org/docs/jax-rs ...
- 正经学C#_介绍与其编写基础:《c#入门经典》
本文所讲内容,均可在<c#入门经典>中可以查询.如有错误,敬请指出.谢谢! C#:全称C Shar.是微软.Net Framework平台下最为主要的客户语言之一.个人理解,c#是微软最为 ...
- selinux 导致无法启动httpd
selinux 导致无法启动httpd ansible_dire:~ # /etc/init.d/httpd restart 停止 httpd: [失败]正在启动 httpd:(13)Permissi ...