Given a string S, find the longest palindromic substring in S. You may assume that the maximum length of S is ,
and there exists one unique longest palindromic substring.

https://leetcode.com/problems/longest-palindromic-substring/

求最大回文的长度,其实这道题比上一道有意思。

方法1 循环查询 (该方案为O(N*N*N))

public static boolean isPalindrome(String s, int start, int end) {
if (((end - start) & 0x1) == 1) {
while (start + 1 != end) {
if (s.charAt(start++) != s.charAt(end--)) {
return false;
}
}
return s.charAt(start) == s.charAt(end);
} else {
while (start != end) {
if (s.charAt(start++) != s.charAt(end--)) {
return false;
} }
} return true;
} public static String longestPalindrome_1(String s) {
int len = s.length();
if (len < 2) {
return s;
}
for (int i = 0, end=len/2; i < end; i++) {
for (int j = len - 1, k = i; k > -1; j--, k--) {
if (k == j && j == i) {
return "";
}
if (isPalindrome(s, k, j)) {
return s.substring(k, j + 1);
}
}
} return "";
}

方法2 动态规划 (该方案为O(N*N))

由于没学过动态规划,特意去学习了一下

/**
*
* 1. 初始条件:
空串 看作是回文的最初始条件,LP[i][i-1]=1。这作为初始状态,并不认为是有回文。
单字符串 是直接认为有回文的,LP[i][i]=1。
2. 状态转移:
若LP[i][j]=1且a[i-1]==a[j+1] ,那么有LP[i-1][j+1]=1,否则LP[i-1][j+1]=0
* @param s
* @return
*/
public static String longestPalindromeDP_2(String s) {
int n = s.length();
int longestBegin = 0;
int maxLen = 1;
boolean[][] table = new boolean[n][n];
// 单字符
for (int i = 0; i < n; i++) {
table[i][i] = true;
}
// 双字符
for (int i = 0; i < n - 1; i++) {
if (s.charAt(i) == s.charAt(i + 1)) {
table[i][i + 1] = true;
longestBegin = i;
maxLen = 2;
}
}
// 子串长度
for (int len = 3; len <= n; len++) {
// 子串的起始位置
for (int i = 0; i < n - len + 1; i++) {
// 子串的结束位置
int j = i + len - 1;
// DP条件
if (table[i + 1][j - 1] && s.charAt(i) == s.charAt(j) ) {
table[i][j] = true;
longestBegin = i;
maxLen = len;
}
}
}
return s.substring(longestBegin, longestBegin + maxLen);
}

方法3 中心扩展,方法1的优化版本 (该方案为O(N*N))

static class Pair {
int s;
int e; public Pair(int s, int e) {
this.s = s;
this.e = e;
} int length() {
return e - s + 1;
}
} public static Pair expandAroundCenter2(String s, int c1, int c2) {
int l = c1, r = c2;
int n = s.length();
while (l > -1 && r < n && s.charAt(l) == s.charAt(r)) {
l--;
r++;
}
return new Pair(l + 1, r);
} public static String longestPalindromeSimple2(String s) {
int n = s.length();
if (n == 0)
return "";
Pair longest = new Pair(0, 1); // a single char itself is a
// palindrome
int i = 0;
// 偶回文
Pair p2 = expandAroundCenter2(s, i, i + 1);
if (p2.length() > longest.length())
longest = p2;
for (i = 1; i < n - 1; i++) {
// 奇回文
Pair p1 = expandAroundCenter2(s, i, i);
if (p1.length() > longest.length())
longest = p1;
// 偶回文
p2 = expandAroundCenter2(s, i, i + 1);
if (p2.length() > longest.length())
longest = p2;
}
return s.substring(longest.s,longest.e);
}

方法.后缀数组, logN * O(n)

方法5.Manacher算法, O(n)

// ^ and $ 避免空指针
static StringBuilder preProcess(String s) {
int n = s.length();
StringBuilder buff = new StringBuilder("^");
for (int i = 0; i < n; i++) {
buff.append("#").append(s.charAt(i));
}
buff.append("#$");
return buff;
}
public static String longestPalindrome(String s) {
if (s.length() < 2) {
return s;
}
// 插入到^#c#a#b#b#a#$
StringBuilder T = preProcess(s);
int length = T.length();
int[] p = new int[length]; //存储每一个位置的长度
int C = 0, R = 0; for (int i = 1; i < length - 1; i++) { int i_mirror = C - (i - C);
int diff = R - i;
// prettyPrint(T, C, R, i, i_mirror, p);
if (diff >= 0)// 当前i在C和R之间,可以利用回文的对称属性
{
// R 能移动已经判断是相等过
if (p[i_mirror] < diff)// i的对称点的回文长度在C的大回文范围内部
{
p[i] = p[i_mirror];
// System.out.println(T.charAt(i_mirror) + "<<$>>"+ T.charAt(i));
} else {
p[i] = diff;
// i处的回文可能超出C的大回文范围了
while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
p[i]++;
}
C = i;
R = i + p[i];
}
} else {
p[i] = 0;
while (T.charAt(i + p[i] + 1) == T.charAt(i - p[i] - 1)) {
p[i]++;
}
C = i;
R = i + p[i];
}
} int maxLen = 0;
int centerIndex = 0;
// 最大的索引
for (int i = 2; i < length - 1; i+=1) {
if (p[i] > maxLen) {
maxLen = p[i];
centerIndex = i;
}
}
// 计算起始地址
centerIndex = (centerIndex - 1 - maxLen) / 2;
return s.substring(centerIndex, centerIndex + maxLen);
}

  

【leedcode】 Longest Palindromic Substring的更多相关文章

  1. 【LeetCode】Longest Palindromic Substring 解题报告

    DP.KMP什么的都太高大上了.自己想了个朴素的遍历方法. [题目] Given a string S, find the longest palindromic substring in S. Yo ...

  2. 【leetcode】Longest Palindromic Substring (middle) 经典

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  3. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

  4. Leetcode:【DP】Longest Palindromic Substring 解题报告

    Longest Palindromic Substring -- HARD 级别 Question SolutionGiven a string S, find the longest palindr ...

  5. 【LeetCode5】Longest Palindromic Substring★★

    1.题目描述: 2.解题思路: 题意:求一个字符串的最长回文子串. 方法一:中心扩展法.遍历字符串的每一个字符,如果存在回文子串,那么中心是某一个字符(奇数)或两个字符的空隙(偶数),然后分两种情况( ...

  6. 【Leetcode】Longest Palindromic Substring

    问题:https://leetcode.com/problems/longest-palindromic-substring/ 给定一个字符串 S,求出 S 的最长回文子串 思路: 1. 回文:一个字 ...

  7. 【SPOJ】Longest Common Substring II (后缀自动机)

    [SPOJ]Longest Common Substring II (后缀自动机) 题面 Vjudge 题意:求若干个串的最长公共子串 题解 对于某一个串构建\(SAM\) 每个串依次进行匹配 同时记 ...

  8. 【SPOJ】Longest Common Substring(后缀自动机)

    [SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...

  9. 【SPOJ】Longest Common Substring II

    [SPOJ]Longest Common Substring II 多个字符串求最长公共子串 还是将一个子串建SAM,其他字符串全部跑一边,记录每个点的最大贡献 由于是所有串,要对每个点每个字符串跑完 ...

随机推荐

  1. linq 的switch实现

    List<RemindSend> lrs = (from a in db.Remind join b in db.Certified on a.certifiedId equals b.C ...

  2. 算法系列:FFT 002

    转载自http://blog.jobbole.com/58246/ 快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.没有正规计算机科学课程背景 ...

  3. JDK各个版本的新特性jdk1.5-jdk8

    JDK各个版本的新特性 对于很多刚接触java语言的初学者来说,要了解一门语言,最好的方式就是要能从基础的版本进行了解,升级的过程,以及升级的新特性,这样才能循序渐进的学好一门语言.今天先为大家介绍一 ...

  4. 各种解析漏洞获取Webshell

    各种解析漏洞拿shell  一.IIS 6.0解析漏洞 IIS 6.0解析利用方法有两种1.目录解析/xx.asp/xx.jpg2.文件解析wooyun.asp;.jpg第一种,在网站下建立文件夹的名 ...

  5. linux 查找文件或者内容常用命令

    whereis <程序名称> find [路径] <表达式> locate <文件名称> 从文件内容查找匹配指定字符串的行: $ grep "被查找的字符 ...

  6. jqGrid配置属性说明

    Property Type Description Default1) ajaxGridOptions object This option allows to set global ajax set ...

  7. backbonejs使用

    backbone是一个非常好的前端MVC框架,将数据与逻辑分离出来,在稍大一点项目中,backbone都有用武之地. 个人感觉backbone最好的地方就是通过事件来管理数据改变导致的视图改变,bac ...

  8. Rotate Image

    You are given an n x n 2D matrix representing an image. Rotate the image by 90 degrees (clockwise). ...

  9. 【听说是线段树】bzoj1012 [JSOI2008]最大数maxnumber

    一眼看题目吓了一跳:这TM不就是单调队列吗,200000又怎样,大不了我二分嘛 系统提示:成功开启 手残模式 开始瞎写: #include <cstdio> ]; ]; int m,mod ...

  10. 【DP】POJ 2385

    题意:又是Bessie 这头牛在折腾,这回他喜欢吃苹果,于是在两棵苹果树下等着接苹果,但苹果不能落地后再接,吃的时间不算,假设他能拿得下所有苹果,但是这头牛太懒了[POJ另一道题目说它是头勤奋的奶牛, ...