http://blogs.msdn.com/b/ntdebugging/archive/2010/06/22/part-3-understanding-pte-non-pae-and-x64.aspx


Hello, Ryan Mangipano (ryanman) again with part three of my series on understanding the output of the !PTE command. In this last installment I’ll continue our manual conversion of Virtual Addresses by converting a Non-PAE VA. Afterwards I’ll convert a VA from X64 Long Mode. Then I’ll discuss the TLB. If you haven’t read part one10001

963

0: kd> !dd 1014000 + (0y1011000101 * @@(sizeof(nt!HARDWARE_PTE)))L1

# 1014b14 06ce7963

Now that I have the physical page base, I'll place  the last 3 hex digits (c00)  from the Virtual Address onto the address base.

0: kd> !dd 6ce7c00 L4

# 6ce7c00 00000001 c0000005 00000000 00000000

0: kd> dd f72c5c00 L4

f72c5c00  00000001 c0000005 00000000 00000000

X64 VA to Physical Address Conversion

Just as PAE added a third level to the non-PAE two-level system, x64 Long mode adds a fourth level to the hierarchy.  This table is called the Page-Map Level-4 (PML4 table). AMD refers to the entries in this table as PML4E (Page-Map Level-4 Entry).  Intel refers to each entry as PML4-Table Entry. Internally we refer to this as theeXtended Page directory Entry (PXE).  Regardless of how you refer to these entries they contain indexes into the PDP table (Page Directory Pointer Table).

Here is the output of the !pte command against a 64-bit address:

7: kd> !pte fffffade`c24eb7c0

VA fffffadec24eb7c0

PXE @ FFFFF6FB7DBEDFA8     PPE at FFFFF6FB7DBF5BD8    PDE at FFFFF6FB7EB7B090    PTE at FFFFF6FD6F612758

contains 0000000111800863  contains 0000000119826863  contains 0000000119839963  contains 0000000001FF6121

pfn 111800     ---DA--KWEV  pfn 119826     ---DA--KWEV  pfn 119839     -G-DA--KWEV  pfn 1ff6       -G--A—KREV

I'll break it down in binary and use data from the processor manuals to separate the bits

 

7: kd> .formats fffffade`c24eb7c0

Binary:  11111111 11111111 11111010 11011110 11000010 01001110 10110111 11000000

Sign extend               11111111 11111111

PML4 offset               11111010 1

PDP offset                1011110 11

PD offset                 000010 010

Page-Table offset         01110 1011

Physical Page Offset      0111 11000000

 Now that I have the numbers, I'll plug them in and find the physical address. If you are having problems following along, refer to part one of this blog and the AMD x64 System Programming manual. You should be comparing the output below to the !pte output above

7: kd> !dq @cr3 + ( 0y111110101 * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

#  147fa8 00000001`11800863

7: kd> !dq 0x00111800000 + (  0y101111011  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

#111800bd8 00000001`19826863

7: kd> !dq 0x119826000 + ( 0y000010010  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

#119826090 00000001`19839963

7: kd> !dq 0x119839000 + ( 0y011101011  * @@(sizeof(ntkrnlmp!HARDWARE_PTE))) L1

#119839758 00000000`01ff6121

7: kd> !dc 1ff67c0 L4

1ff67c0 5085ff48 48000005 68244c8b 04a8f633 H..P...H.L$h3...

7: kd> dc fffffade`c24eb7c0 L4

fffffade`c24eb7c0  5085ff48 48000005 68244c8b 04a8f633  H..P...H.L$h3...

TLB- Translation Lookaside Buffer and Conclusion

The CPU’s memory management unit performs these operations to translate virtual addresses to physical. Wouldn’t it be great if we could cache the virtual address to physical page information in a location that can be accessed very quickly so that the CPU doesn’t have to look this up for future references to this page?  That is just what the Translation Lookaside Buffer (TLB) does. Hopefully this will shed some light on some basic memory structures like Large Pages, Flags, and the TLB so I encourage you to read more about these topics from the following sources-

How PAE x86 works (on MSDN): http://technet.microsoft.com/en-us/library/cc736309(WS.10).aspx

Intel  & AMD processor manuals: http://www.intel.com/products/processor/manuals/index.htm andhttp://developer.amd.com/documentation/guides/Pages/default.aspx#manuals

“Windows Internals, 5th Edition” Mark E. Russinovich and David A. Solomon with Alex Ionescu  -Chapter 9: Memory Management


[转]Part 3: Understanding !PTE - Non-PAE and X64的更多相关文章

  1. [转]Part2: Understanding !PTE, Part2: Flags and Large Pages

    http://blogs.msdn.com/b/ntdebugging/archive/2010/04/14/understanding-pte-part2-flags-and-large-pages ...

  2. [转]Part1: Understanding !PTE , Part 1: Let’s get physical

    http://blogs.msdn.com/b/ntdebugging/archive/2010/02/05/understanding-pte-part-1-let-s-get-physical.a ...

  3. Windows内存放血篇,突破物理内存的CopyOnWrite

      本篇以x86(开启PAE) 以及x64 Win7系统 不借助微软API突破内存的写拷贝机制进行讲述 https://bbs.pediy.com/thread-222949.htm   0x01 B ...

  4. 10_PAE_非PAE

    前置知识: 在 windows 中 保护模式 有两种模式: 段保护 和 页保护 段保护 主要体现在 段选择子上:但是数据段.代码段.栈段等采用的都是4GB平坦模式,段的特征并没有那样展现.所以具体的保 ...

  5. 保护模式篇——PAE分页

    写在前面   此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...

  6. GOOD MEETINGS CREATE SHARED UNDERSTANDING, NOT BRDS!

      Deliverables and artifacts were a focal point of BA work during the early part of my career. If I ...

  7. Understanding delete

    简述 我们都知道无法通过delete关键字针对变量和函数进行操作,而对于显示的对象属性声明却可以进行,这个原因需要深究到js的实现层上去,让我们跟随 Understanding delete 来探究一 ...

  8. Life Cycle of Thread – Understanding Thread States in Java

    Life Cycle of Thread – Understanding Thread States in Java 深入理解java线程生命周期. Understanding Life Cycle ...

  9. Understanding the Internal Message Buffers of Storm

    Understanding the Internal Message Buffers of Storm Jun 21st, 2013 Table of Contents Internal messag ...

随机推荐

  1. 两个有意思的模式在ECMAScript中的实现

    简介 本篇文章对设计模式进行了筛选, 只列举两个有意思(坑)的设计实现, 如有错误愿闻其详. 构造函数 ECMAScript中的构造函数和其他语言的有那么点特别之处,可以认为, 一个函数, 如果被以n ...

  2. JMeter学习-030-JMeter性能测试常用之事务控制器实例

    通常进行性能测试时,我们一般仅考虑主要的数据返回,不考虑页面渲染所需要的数据(例如:css.js.图片等).但当我们需要衡量打开一个页面(页面渲染完成)的性能时,我们就需要考虑完成页面渲染所需要的图片 ...

  3. RestTemplate配置

    什么是RestTemplate? RestTemplate是Spring提供的用于访问Rest服务的客户端,RestTemplate提供了多种便捷访问远程Http服务的方法,能够大大提高客户端的编写效 ...

  4. ubuntu server 12.04U盘安装,提示无法挂载安装光盘或光盘读取数据出错

    今天用Ultraiso将Ubuntu server 12.04 刻入U盘中安装系统,中间提示错误:1.检测不到cdrom(即U盘没有挂载上):2.从光盘中读取数据出错.问题如下图所示: 上网搜了下解决 ...

  5. java 读写文件

    1. 读文件 import java.io.*; import java.util.*; public class test { public void test_readfile(String fi ...

  6. PHP获取某个表与其他表的关联关系算法

    如图 电影movie有多个附表,如果通过movie表来找出多个与之关联的表. 本算法规则: 外键写法必须是X_id; A与B 1对多关系,中间表表名必须是A_B,且A_B,必须包含A_id,B_id外 ...

  7. Android系统拍照源码

    个人对于Android系统拍照的一些总结:一种自定义图片拍照路径 ,另一种直接利用Android拍照后经过处理的缩略图 特别注意第一种方式需要增加SDK读写权限: <uses-permissio ...

  8. 如何查看oracle数据库的所有的关键字

    管理员账户登录后,执行以下命令:  select * from v$reserved_words 附上参考: NOMONITORINGRECORDS_PER_BLOCKCASCADEDYNAMIC_S ...

  9. 实体框架高级应用之动态过滤 EntityFramework DynamicFilters

    实体框架高级应用之动态过滤 EntityFramework DynamicFilters 我们开门见山,直奔主题. 一.EntityFramework DynamicFilters 是什么,它能做什么 ...

  10. BabelMap 9.0.0.3 汉化版(2016年12月27日更新)

    软件简介 BabelMap 是一个免费的字体映射表工具,可辅助使用<汉字速查>程序. 该软件可使用系统上安装的所有字体浏览 Unicode 中的十万个字符,还带有拼音及部首检字法,适合文献 ...