HT for Web中2D和3D应用都支持树状结构数据的展示,展现效果各异,2D上的树状结构在展现层级关系明显,但是如果数据量大的话,看起来就没那么直观,找到指定的节点比较困难,而3D上的树状结构在展现上配合HT for Web的弹力布局组件会显得比较直观,一眼望去可以把整个树状结构数据看个大概,但是在弹力布局的作用下,其层次结构看得就不是那么清晰了。所以这时候结构清晰的3D树的需求就来了,那么这个3D树具体长成啥样呢,我们来一起目睹下~

要实现这样的效果,该从何下手呢?接下来我们就将这个问题拆解成若干个小问题来解决。

1. 创建一个树状结构

有了解过HT for Web的朋友,对树状结构数据的创建应该都不陌生,在这里我就不做深入的探讨了。树状结构数据的创建很简单,在这里为了让代码更简洁,我封装了三个方法来创建树状结构数据,具体代码如下:

/**
* 创建连线
* @param {ht.DataModel} dataModel - 数据容器
* @param {ht.Node} source - 起点
* @param {ht.Node} target - 终点
*/
function createEdge(dataModel, source, target) {
// 创建连线,链接父亲节点及孩子节点
var edge = new ht.Edge();
edge.setSource(source);
edge.setTarget(target);
dataModel.add(edge);
} /**
* 创建节点对象
* @param {ht.DataModel} dataModel - 数据容器
* @param {ht.Node} [parent] - 父亲节点
* @returns {ht.Node} 节点对象
*/
function createNode(dataModel, parent) {
var node = new ht.Node();
if (parent) {
// 设置父亲节点
node.setParent(parent); createEdge(dataModel, parent, node);
}
// 添加到数据容器中
dataModel.add(node);
return node;
} /**
* 创建结构树
* @param {ht.DataModel} dataModel - 数据容器
* @param {ht.Node} parent - 父亲节点
* @param {Number} level - 深度
* @param {Array} count - 每层节点个数
* @param {function(ht.Node, Number, Number)} callback - 回调函数(节点对象,节点对应的层级,节点在层级中的编号)
*/
function createTreeNodes(dataModel, parent, level, count, callback) {
level--;
var num = (typeof count === 'number' ? count : count[level]); while (num--) {
var node = createNode(dataModel, parent);
// 调用回调函数,用户可以在回调里面设置节点相关属性
callback(node, level, num);
if (level === 0) continue;
// 递归调用创建孩子节点
createTreeNodes(dataModel, node, level, count, callback);
}
}

嘿嘿,代码写得可能有些复杂了,简单的做法就是嵌套几个for循环来创建树状结构数据,在这里我就不多说了,接下来我们来探究第二个问题。

2. 在2D拓扑下模拟3D树状结构每层的半径计算

在3D下的树状结构体最大的问题就在于,每个节点的层次及每层节点围绕其父亲节点的半径计算。现在树状结构数据已经有了,那么接下来就该开始计算半径了,我们从两层树状结构开始推算:

我现在先创建了两层的树状结构,所有的子节点是一字排开,并没有环绕其父亲节点,那么我们该如何去确定这些孩子节点的位置呢?

首先我们得知道,每个末端节点都有一圈属于自己的领域,不然节点与节点之间将会存在重叠的情况,所以在这里,我们假定末端节点的领域半径为25,那么两个相邻节点之间的最短距离将是两倍的节点领域半径,也就是50,而这些末端节点将均匀地围绕在其父亲节点四周,那么相邻两个节点的张角就可以确认出来,有了张角,有了两点间的距离,那么节点绕其父亲节点的最短半径也就能计算出来了,假设张角为a,两点间最小距离为b,那么最小半径r的计算公式为:

r = b / 2 / sin(a / 2);

那么接下来我么就来布局下这个树,代码是这样写的:

/**
* 布局树
* @param {ht.Node} root - 根节点
* @param {Number} [minR] - 末端节点的最小半径
*/
function layout(root, minR) {
// 设置默认半径
minR = (minR == null ? 25 : minR);
// 获取到所有的孩子节点对象数组
var children = root.getChildren().toArray();
// 获取孩子节点个数
var len = children.length;
// 计算张角
var degree = Math.PI * 2 / len;
// 根据三角函数计算绕父亲节点的半径
var sin = Math.sin(degree / 2),
r = minR / sin;
// 获取父亲节点的位置坐标
var rootPosition = root.p(); children.forEach(function(child, index) {
// 根据三角函数计算每个节点相对于父亲节点的偏移量
var s = Math.sin(degree * index),
c = Math.cos(degree * index),
x = s * r,
y = c * r; // 设置孩子节点的位置坐标
child.p(x + rootPosition.x, y + rootPosition.y);
});
}

在代码中,你会发现我将末端半径默认设置为25了,如此,我们通过调用layout()方法就可以对结构树进行布局了,其布局效果如下:

从效果图可以看得出,末端节点的默认半径并不是很理想,布局出来的效果连线都快看不到了,因此我们可以增加末端节点的默认半径来解决布局太密的问题,如将默认半径设置成40的效果图如下:

现在两层的树状分布解决了,那么我们来看看三层的树状分布该如何处理。

将第二层和第三层看成一个整体,那么其实三层的树状结构跟两层是一样的,不同的是在处理第二层节点时,应该将其看做一个两层的树状结构来处理,那么像这种规律的处理用递归最好不过了,因此我们将代码稍微该着下,在看看效果如何:

不行,节点都重叠在一起了,看来简单的递归是不行的,那么具体的问题出在哪里呢?

仔细分析了下,发现父亲节点的领域半径是由其孩子节点的领域半径决定的,因此在布局时需要知道自身节点的领域半径,而且节点的位置取决于父亲节点的领域半径及位置信息,这样一来就无法边计算半径边布局节点位置了。

那么现在只能将半径的计算和布局分开来,做两步操作了,我们先来分析下节点半径的计算:

首先需要明确最关键的条件,父亲节点的半径取决于其孩子节点的半径,这个条件告诉我们,只能从下往上计算节点半径,因此我们设计的递归函数必须是先递归后计算,废话不多说,我们来看下具体的代码实现:

/**
* 就按节点领域半径
* @param {ht.Node} root - 根节点对象
* @param {Number} minR - 最小半径
*/
function countRadius(root, minR) {
minR = (minR == null ? 25 : minR); // 若果是末端节点,则设置其半径为最小半径
if (!root.hasChildren()) {
root.a('radius', minR);
return;
} // 遍历孩子节点递归计算半径
var children = root.getChildren();
children.each(function(child) {
countRadius(child, minR);
}); var child0 = root.getChildAt(0);
// 获取孩子节点半径
var radius = child0.a('radius'); // 计算子节点的1/2张角
var degree = Math.PI / children.size();
// 计算父亲节点的半径
var pRadius = radius / Math.sin(degree); // 设置父亲节点的半径及其孩子节点的布局张角
root.a('radius', pRadius);
root.a('degree', degree * 2);
}

OK,半径的计算解决了,那么接下来就该解决布局问题了,布局树状结构数据需要明确:孩子节点的坐标位置取决于其父亲节点的坐标位置,因此布局的递归方式和计算半径的递归方式不同,我们需要先布局父亲节点再递归布局孩子节点,具体看看代码吧:

/**
* 布局树
* @param {ht.Node} root - 根节点
*/
function layout(root) {
// 获取到所有的孩子节点对象数组
var children = root.getChildren().toArray();
// 获取孩子节点个数
var len = children.length;
// 计算张角
var degree = root.a('degree');
// 根据三角函数计算绕父亲节点的半径
var r = root.a('radius');
// 获取父亲节点的位置坐标
var rootPosition = root.p(); children.forEach(function(child, index) {
// 根据三角函数计算每个节点相对于父亲节点的偏移量
var s = Math.sin(degree * index),
c = Math.cos(degree * index),
x = s * r,
y = c * r; // 设置孩子节点的位置坐标
child.p(x + rootPosition.x, y + rootPosition.y); // 递归调用布局孩子节点
layout(child);
});
}

代码写完了,接下来就是见证奇迹的时刻了,我们来看看效果图吧:

不对呀,代码应该是没问题的呀,为什么显示出来的效果还是会重叠呢?不过仔细观察我们可以发现相比上个版本的布局会好很多,至少这次只是末端节点重叠了,那么问题出在哪里呢?

不知道大家有没有发现,排除节点自身的大小,倒数第二层节点与节点之间的领域是相切的,那么也就是说节点的半径不仅和其孩子节点的半径有关,还与其孙子节点的半径有关,那我们把计算节点半径的方法改造下,将孙子节点的半径也考虑进去再看看效果如何,改造后的代码如下:

/**
* 就按节点领域半径
* @param {ht.Node} root - 根节点对象
* @param {Number} minR - 最小半径
*/
function countRadius(root, minR) {
…… var child0 = root.getChildAt(0);
// 获取孩子节点半径
var radius = child0.a('radius'); var child00 = child0.getChildAt(0);
// 半径加上孙子节点半径,避免节点重叠
if (child00) radius += child00.a('radius'); ……
}

下面就来看看效果吧~

哈哈,看来我们分析对了,果然就不再重叠了,那我们来看看再多一层节点会是怎么样的壮观场景呢?

哦,NO!这不是我想看到的效果,又重叠了,好讨厌。

不要着急,我们再来仔细分析分析下,在前面,我们提到过一个名词——领域半径,什么是领域半径呢?很简单,就是可以容纳下自身及其所有孩子节点的最小半径,那么问题就来了,末端节点的领域半径为我们指定的最小半径,那么倒数第二层的领域半径是多少呢?并不是我们前面计算出来的半径,而应该加上末端节点自身的领域半径,因为它们之间存在着包含关系,子节点的领域必须包含于其父亲节点的领域中,那我们在看看上图,是不是感觉末端节点的领域被侵占了。那么我们前面计算出来的半径代表着什么呢?前面计算出来的半径其实代表着孩子节点的布局半径,在布局的时候是通过该半径来布局的。

OK,那我们来总结下,节点的领域半径是其下每层节点的布局半径之和,而布局半径需要根据其孩子节点个数及其领域半径共同决定。

好了,我们现在知道问题的所在了,那么我们的代码该如何去实现呢?接着往下看:

/**
* 就按节点领域半径及布局半径
* @param {ht.Node} root - 根节点对象
* @param {Number} minR - 最小半径
*/
function countRadius(root, minR) {
minR = (minR == null ? 25 : minR); // 若果是末端节点,则设置其布局半径及领域半径为最小半径
if (!root.hasChildren()) {
root.a('radius', minR);
root.a('totalRadius', minR);
return;
} // 遍历孩子节点递归计算半径
var children = root.getChildren();
children.each(function(child) {
countRadius(child, minR);
}); var child0 = root.getChildAt(0);
// 获取孩子节点半径
var radius = child0.a('radius'),
totalRadius = child0.a('totalRadius'); // 计算子节点的1/2张角
var degree = Math.PI / children.size();
// 计算父亲节点的布局半径
var pRadius = totalRadius / Math.sin(degree); // 缓存父亲节点的布局半径
root.a('radius', pRadius);
// 缓存父亲节点的领域半径
root.a('totalRadius', pRadius + totalRadius);
// 缓存其孩子节点的布局张角
root.a('degree', degree * 2);
}

在代码中我们将节点的领域半径缓存起来,从下往上一层一层地叠加上去。接下来我们一起验证其正确性:

搞定,就是这样子了,2D拓扑上面的布局搞定了,那么接下来该出动3D拓扑啦~

3. 加入z轴坐标,呈现3D下的树状结构

3D拓扑上面布局无非就是多加了一个坐标系,而且这个坐标系只是控制节点的高度而已,并不会影响到节点之间的重叠,所以接下来我们来改造下我们的程序,让其能够在3D上正常布局。

也不需要太大的改造,我们只需要修改下布局器并且将2D拓扑组件改成3D拓扑组件就可以了。

/**
* 布局树
* @param {ht.Node} root - 根节点
*/
function layout(root) {
// 获取到所有的孩子节点对象数组
var children = root.getChildren().toArray();
// 获取孩子节点个数
var len = children.length;
// 计算张角
var degree = root.a('degree');
// 根据三角函数计算绕父亲节点的半径
var r = root.a('radius');
// 获取父亲节点的位置坐标
var rootPosition = root.p3(); children.forEach(function(child, index) {
// 根据三角函数计算每个节点相对于父亲节点的偏移量
var s = Math.sin(degree * index),
c = Math.cos(degree * index),
x = s * r,
z = c * r; // 设置孩子节点的位置坐标
child.p3(x + rootPosition[0], rootPosition[1] - 100, z + rootPosition[2]); // 递归调用布局孩子节点
layout(child);
});
}

上面是改造成3D布局后的布局器代码,你会发现和2D的布局器代码就差一个坐标系的的计算,其他的都一样,看下在3D上布局的效果:

恩,有模有样的了,在文章的开头,我们可以看到每一层的节点都有不同的颜色及大小,这些都是比较简单,在这里我就不做深入的讲解,具体的代码实现如下:

var level = 4,
size = (level + 1) * 20; var root = createNode(dataModel);
root.setName('root');
root.p(100, 100); root.s('shape3d', 'sphere');
root.s('shape3d.color', randomColor());
root.s3(size, size, size); var colors = {},
sizes = {};
createTreeNodes(dataModel, root, level - 1, 5, function(data, level, num) {
if (!colors[level]) {
colors[level] = randomColor();
sizes[level] = (level + 1) * 20;
} size = sizes[level]; data.setName('item-' + level + '-' + num);
// 设置节点形状为球形
data.s('shape3d', 'sphere');
data.s('shape3d.color', colors[level]);
data.s3(size, size, size);
});

在这里引入了一个随机生成颜色值的方法,对每一层随机生成一种颜色,并将节点的形状改成了球形,让页面看起来美观些(其实很丑)。

提个外话,节点上可以贴上图片,还可以设置文字的朝向,可以根据用户的视角动态调整位置,等等一系列的拓展,这些大家都可以去尝试,相信都可以做出一个很漂亮的3D树出来。

到此,整个Demo的制作就结束了,今天的篇幅有些长,感谢大家的耐心阅读,在设计上或则是表达上有什么建议或意见欢迎大家提出,点击这里可以访问HT for Web官网上的手册

HTML5的WebGL实现的3D和2D拓扑树的更多相关文章

  1. 基于 HTML5 的 WebGL 楼宇自控 3D 可视化监控

    前言 智慧楼宇和人们的生活息息相关,楼宇智能化程度的提高,会极大程度的改善人们的生活品质,在当前工业互联网大背景下受到很大关注.目前智慧楼宇可视化监控的主要优点包括: 智慧化 -- 智慧楼宇是一个生态 ...

  2. 基于HTML5的WebGL电信网管3D机房监控应用

    先上段视频,不是在玩游戏哦,是规规矩矩的电信网管企业应用,嗯,全键盘的漫游3D机房: http://www.hightopo.com/guide/guide/core/3d/examples/exam ...

  3. 基于 HTML5 和 WebGL 的地铁站 3D 可视化系统

    前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCAD ...

  4. 基于 HTML5 的 WebGL 技术构建 3D 场景(一)

    今天和大家分享的是 3D 系列之 3D 预定义模型. HT for Web 提供了多种基础类型供用户建模使用,不同于传统的 3D 建模方式,HT 的建模核心都是基于 API 的接口方式,通过 HT 预 ...

  5. 基于 HTML5 WebGL 的地铁站 3D 可视化系统

    前言 工业互联网,物联网,可视化等名词在我们现在信息化的大背景下已经是耳熟能详,日常生活的交通,出行,吃穿等可能都可以用信息化的方式来为我们表达,在传统的可视化监控领域,一般都是基于 Web SCAD ...

  6. 基于 HTML5 的 WebGL 和 VR 技术的 3D 机房数据中心可视化

    前言 在 3D 机房数据中心可视化应用中,随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的 ...

  7. 基于 HTML5 的 WebGL 自定义 3D 摄像头监控模型

    前言 随着视频监控联网系统的不断普及和发展, 网络摄像机更多的应用于监控系统中,尤其是高清时代的来临,更加快了网络摄像机的发展和应用. 在监控摄像机数量的不断庞大的同时,在监控系统中面临着严峻的现状问 ...

  8. 基于 HTML5 WebGL 的挖掘机 3D 可视化应用

    前言 在工业互联网以及物联网的影响下,人们对于机械的管理,机械的可视化,机械的操作可视化提出了更高的要求.如何在一个系统中完整的显示机械的运行情况,机械的运行轨迹,或者机械的机械动作显得尤为的重要,因 ...

  9. 基于 HTML5 WebGL 的加油站 3D 可视化监控

    前言 随着数字化,工业互联网,物联网的发展,我国加油站正向有人值守,无人操作,远程控制的方向发展,传统的人工巡查方式逐渐转变为以自动化控制为主的在线监控方式,即采用数据采集与监控系统 SCADA.SC ...

随机推荐

  1. 微信公共平台开发-(.net实现)3--发送文本消息

    最近,项目这边比较忙,没来得及续写,哎,先吐吐槽吧,在这个周六还得来上班,以后每个周六多要上,一天的滋味真有点受不鸟呀.还不习惯ing... 嗯,别的不说了现在开始接着上次http://www.cnb ...

  2. linux下用rpm包安装默认配置

    rpm安装默认目录:数据文件:/var/lib/mysql/配置文件模板:/usr/share/mysqlmysql客户端工具目录:/usr/bin日志目录:/var/log/pid,sock文件目录 ...

  3. [你必须知道的NOSQL系列]专题一:MongoDB快速入门

    一.前言 现在越来越多的公司开始采用非关系数据库了,并且很多公司的面试都要求面试者有MongoDB的使用经验,至于非关系数据库与关系型数据库之间的区别大家可以自行百度.但是作为程序员的我们,既然大部分 ...

  4. java 多线程(synchronized)

    package com.example; public class App { public static void main(String[] args) { doRunable dr = new ...

  5. Nim语言的模块化编程

    前言 Nim支持把一大段程序分成若干个模块 一个模块就是一个源代码文件 每个模块都拥有它自己的名称空间 模块化可以起到封装(信息隐藏)和分步编译的作用 一个模块可以通过import语句获得另一个模块的 ...

  6. resumablejs 分块上传 断点续传

    http://www.resumablejs.com/ 官网 upload.html <!DOCTYPE html> <html lang="en"> &l ...

  7. MYSQL 大文件无法导入的问题。

    1. 设置maxpacket. 要在[mysqld]标签下.这个疏忽了,就会发现没效果. 基本网上的都没说清,要看stackoverflow. Change in the my.ini file. I ...

  8. mac命令

    mac下卸载nodesudo rm -rf /usr/local/{bin/{node,npm},lib/node_modules/npm,lib/node,share/man/*/node.*}xc ...

  9. NPOIExcelHelper

    using System.Data; using System.Configuration; using System.Web; using System.IO; using System.Text; ...

  10. ios 下创建,删除文件夹的方法

    NSString *imageDir = [NSString stringWithFormat:@"%@/Caches/%@", NSHomeDirectory(), dirNam ...