JZOJ5409. Fantasy && Luogu2048 [NOI2010]超级钢琴
题目大意
给出一个序列和\(L, R\), 求前k大长度在\([L,R]\)之间的连续子序列的和的和.
解题思路
朴素的想法是对于一个左端点\(p\), 它的右区间取值范围是一个连续的区间即\([p+L-1,p+R-1]\). 枚举这些区间的和然后排序一下什么的, 当然可以用前缀和优化.
考虑对于一个左端点和一个右端点的区间组成的三元组, 设它的答案是\(f(p,l,r)\),那么\(f(p,l,r)\)是一个固定的数, 即\(f(p,l,r)=max(sum(p,r)), \text{其中}(r\in [p+L-1,p+R-1])\).
转化为前缀和后, \(sum(p,r)=sum_r-sum_{p-1}\), 由于\(sum_{p-1}\)一定, 其实就是\(sum_r\)最大的\(r\)最优. 于是这样的最优的\(r\)可以用ST表在\(O(1)\)的时间内求出.
实际上对于每一个左端点都有一个类似的三元组, 考虑如何能把最大的前\(k\)个子序列求出.
若此时\(f(p,l,r)\)(设\([l,r]\)中最优的端点是\(w\))最大, 将\(f(p,l,r)\)累加到答案的同时, \([l,r]\)这个右端点区间会分裂成两个区间\([l,w)\)和\((w,r]\)(前提是这样的区间存在).
为什么? \(w\)只是\([l,r]\)中最大的右端点, 实际上次大的, 第三大的..都能作为可能的答案.
根据上面的分析, 解法已经呼然欲出: 我们维护一个大根堆, 每次取出最大的三元组, 累加答案并分裂区间加入堆. 由于一共只会分裂\(k\)次的区间, 所以堆中的元素不超过\(n+k\)个.
加上预处理, 时间复杂度\(O(n\log{n}+k\log{(n+k)})\).
后记
自己的数据结构真的好差.. 某些大佬(pzr等人)用主席树也能过, 我又不会....
PS:洛谷上的数据范围比标程要大一些
#include <queue>
#include <cstdio>
#include <cstring>
#define W 17
#define N 100010
#define ll long long
#define fo(i, a, b) for(int i = (a); i <= (b); ++i)
#define fd(i, a, b) for(int i = (a); i >= (b); --i)
using namespace std;
inline int min(int a, int b){return a < b ? a : b;}
inline int read()
{
int x = 0; char ch = getchar(); bool ne = 0;
while(ch < '0' || ch > '9') ne |= (ch == '-'), ch = getchar();
while(ch >= '0' && ch <= '9') x = (x << 3) + (x << 1) + (ch ^ 48), ch = getchar();
return ne ? -x : x;
}
int n, k, L, R, lg[N], p2[W + 3] = {1}, sum[N];
ll ans;
namespace ST
{
int s[N][W + 3];
void init()
{
fo(i, 1, n) s[i][0] = i;
fo(j, 1, lg[n])
fo(i, 1, n - p2[j] + 1)
{
int x = s[i][j - 1], y = s[i + p2[j - 1]][j - 1];
s[i][j] = sum[x] > sum[y] ? x : y;
}
}
inline int query(int l, int r)
{
int p = lg[r - l + 1];
int x = s[l][p], y = s[r - p2[p] + 1][p];
return sum[x] > sum[y] ? x : y;
}
}
struct Node
{
int p, l, r, w;
Node(){}
Node(int _p, int _l, int _r){p = _p, l = _l, r = _r, w = ST::query(l, r);}
inline int val() const {return sum[w] - sum[p - 1];}
bool operator<(const Node b) const
{
return val() < b.val();
}
};
priority_queue<Node> h;
int main()
{
freopen("fantasy.in", "r", stdin);
freopen("fantasy.out", "w", stdout);
n = read(), k = read(), L = read(), R = read();
fo(i, 1, W) p2[i] = p2[i - 1] << 1;
fo(i, 1, n) sum[i] = read() + sum[i - 1];
fo(i, 2, n) lg[i] = lg[i >> 1] + 1;
ST::init();
fo(i, 1, n - L + 1)
h.push(Node(i, i + L - 1, min(n, i + R - 1)));
fo(i, 1, k)
{
Node t = h.top(); h.pop();
ans += t.val();
if(t.l < t.w) h.push(Node(t.p, t.l, t.w - 1));
if(t.w < t.r) h.push(Node(t.p, t.w + 1, t.r));
}
printf("%lld", ans);
return 0;
}
JZOJ5409. Fantasy && Luogu2048 [NOI2010]超级钢琴的更多相关文章
- luogu2048 [NOI2010]超级钢琴 (优先队列+主席树)
思路:先扫一遍所有点作为右端点的情况,把它们能产生的最大值加到一个优先队列里,然后每次从优先队列里取出最大值,再把它对应的区间的次大值加到优先队列里,这样做K次 可以用一个前缀和,每次找i为右端点的第 ...
- BZOJ 2006: [NOI2010]超级钢琴
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2613 Solved: 1297[Submit][Statu ...
- Bzoj 2006: [NOI2010]超级钢琴 堆,ST表
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 2222 Solved: 1082[Submit][Statu ...
- NOI2010超级钢琴 2
2006: [NOI2010]超级钢琴 Time Limit: 20 Sec Memory Limit: 552 MBSubmit: 1296 Solved: 606[Submit][Status ...
- BZOJ 2006: [NOI2010]超级钢琴( RMQ + 堆 )
取最大的K个, 用堆和RMQ来加速... ----------------------------------------------------------------- #include<c ...
- BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表
BZOJ_2006_[NOI2010]超级钢琴_贪心+堆+ST表 Description 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的 音乐 ...
- bzoj2006 [NOI2010]超级钢琴 (及其拓展)
bzoj2006 [NOI2010]超级钢琴 给定一个序列,求长度在 \([L,\ R]\) 之间的区间和的前 \(k\) 大之和 \(n\leq5\times10^5,\ k\leq2\times1 ...
- P2048 [NOI2010]超级钢琴(RMQ+堆+贪心)
P2048 [NOI2010]超级钢琴 区间和--->前缀和做差 多次查询区间和最大--->前缀和RMQ 每次取出最大的区间和--->堆 于是我们设个3元组$(o,l,r)$,表示左 ...
- 洛谷 P2048 [NOI2010]超级钢琴 解题报告
P2048 [NOI2010]超级钢琴 题目描述 小Z是一个小有名气的钢琴家,最近C博士送给了小Z一架超级钢琴,小Z希望能够用这架钢琴创作出世界上最美妙的音乐. 这架超级钢琴可以弹奏出n个音符,编号为 ...
随机推荐
- java foreach循环抛出异常java.util.ConcurrentModificationException
代码如下: for (Iterator<String> iter = list.iterator(); iter.hasNext(); ) { if (Integer.parseInt(i ...
- Dubbo提供者的异步执行
从前面"对提供者的异步调用"例子可以看出,消费者对提供者实现了异步调用,消费者线程的执行过程不再发生阻塞,但提供者对IO耗时操作仍采用的是同步调用,即IO操作仍会阻塞Dubbo的提 ...
- 结合redis缓存的方式,查询和展示分类信息
package cn.itcast.travel.service.impl;import cn.itcast.travel.dao.CategoryDao;import cn.itcast.trave ...
- 06 - Vue3 UI Framework - Dialog 组件
做完按钮之后,我们应该了解了遮罩层的概念,接下来我们来做 Dialog 组件! 返回阅读列表点击 这里 需求分析 默认是不可见的,在用户触发某个动作后变为可见 自带白板卡片,分为上中下三个区域,分别放 ...
- Mysql资料 Binlog
目录 一.简介 二.开启binlog及相关参数 开启 相关操作 三.查看binlog日志 使用mysqlbinlog自带查看命令法 mysql加载方式查询 四.恢复数据 五.命令参数 一.简介 MyS ...
- shell脚本 mysqldump方式全备份mysql
一.简介 源码地址 日期:2018/10/8 介绍:mysqldump方式全备份脚本,并保存固定天数的全备份 效果图: 二.使用 适用:centos6+ 语言:中文 注意:使用前先查看脚本,修改对应变 ...
- 安装Google BBR加速
目录 一.简介 二.安装 三.设置BBR 一.简介 Google BBR 是一款免费开源的TCP拥塞控制传输控制协议, 可以使Linux服务器显著提高吞吐量和减少TCP连接的延迟. 二.安装 1.yu ...
- 数据挖掘实战 - 天池新人赛o2o优惠券使用预测
数据挖掘实战 - o2o优惠券使用预测 一.前言 大家好,家人们.今天是2021/12/14号.上次更新是2021/08/29.上篇文章中说到要开两个专题,果不其然我鸽了,这一鸽就是三个多月.今天,我 ...
- SQLserver 2014 如何使用Datename()函数获取对应时间
一.在本文中,GetDate()获得的日期由两部分组成,分别是今天的日期和当时的时间: Select GetDate() 二.用DateName()就可以获得相应的年.月.日,然后再把它们连接起来就可 ...
- 果蝇优化算法_Fruit Fly Optimization
1. 果蝇优化算法背景 在夏天,果蝇是一种随处可见的昆虫.果蝇在嗅觉和视觉特别突出.腐烂的食物发出一种刺鼻的味道,温度越高这种气味的扩散速度较快,果蝇对这种味道非常敏感.腐烂的味道和食物的位置有关.一 ...