题目描述

给定 n 和 n 个信息,每个信息包含一个词性 a (只有三种:名,动,辅)和对应的词 mot ,形为“ \(a.mot\) ”。(一次可能多词性)

最后给一个长度不大于 \(5KB\) 的冰峰文文章,将这篇冰峰文文章划分为最少的句子,在这个前提下,将文章划分为最少的单词时,求划分的句子数量和单词数量。

划分标准:



(别问我为什么盗图。。

\(1\leq n\leq 10^3\ \ \ \ mot.len\leq 20\)

\(solution\)

首先要搞懂题目中的图是什么玩意(我真的看了好久都没看懂。。)

所有语法简述下来就是:


1.名词短语是许多个辅词加一个名词组成的。

2.动词短语是许多个辅词加一个动词组成的。

3.一个句子以名词短语开头,名词短语和动词短语交替出现而组成的。

4.文章为多句话组成。


所以对于任意词,有四种类型:


1.名词。

2.动词。

3.辅名词的辅词。

4.辅动词的辅词。


状态应该很自然了。。(要什么设什么呗)

\(f[j][i][0]\) 指前 \(i\) 个字母,最后一个单词是名词,构成了 \(j\) 个句子的最小单词数。

\(f[j][i][1]\) 指前 \(i\) 个字母,最后一个单词是动词,构成了 \(j\) 个句子的最小单词数。

\(f[j][i][2]\) 指前 \(i\) 个字母,最后一个单词是辅词,后面要接动词,构成了 \(j\) 个句子的最小单词数。

\(f[j][i][3]\) 指前 \(i\) 个字母,最后一个单词是辅词,后面要接名词,构成了 \(j\) 个句子的最小单词数。

状态转移方程就按照语法看能否转移就行

\(f[j][i][0] \Longrightarrow \min{(f[j][k][1/3],f[j-1][k][0/2])}\)

\(f[j][i][1] \Longrightarrow \min{(f[j][k][0/2])}\)

\(f[j][i][2] \Longrightarrow \min{(f[j][k][0/2])}\)

\(f[j][i][3] \Longrightarrow \min{(f[j][k][1/3],f[j-1][k][0/1])}\)

实际上看式子的话, \(j\) 那一维可以滚动起来。(虽然不滚掉好像问题不大,但省空间多好。。)

最后答案就是按题目来,求一个最小的 \(ans\) ,存在 \(f[ans][len][0/1]\) ,如果都存在,取较小值。

\(DP\) 这里就结束了,考虑如何实现。

明显 \(DP\) 的复杂度不允许我们每次枚举所有单词再去比较。

所以想到了用一个比较实用的东西 \(trie\) 可以把速度拉起来。

基本上这题就搞定了,就是注意一定把数组开稍微大点(我因为忽略数组大小而傻乎乎地去调了半个小时程序了)

\(code\)

#include<bits/stdc++.h>
#define reg register
using namespace std;
typedef long long ll;
const int N=1e3+10,M=6e3+10,K=3e4+10;
const int INF=0x3f3f3f3f;
int n,m,mlth,f[2][M][4],tri[M][24],tot,op,ans1,ans2;
char sw[M],sd[M];
struct trie{
int tr[26],opt,it;
inline void clear(){
memset(tr,0,sizeof(tr));
it=-1;opt=0;
}
}trie[K];
inline int read(){
int s=0,w=1;
char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') s=s*10+ch-'0',ch=getchar();
return s*w;
}
inline void insert(char s[],int lth,int opt){
int id=0,val;
for(int i=2;i<lth;++i){
val=s[i]-'a';
if(!trie[id].tr[val]){
trie[++tot].clear();
trie[tot].it=val;
trie[id].tr[val]=tot;
}
id=trie[id].tr[val];
}
trie[id].opt|=opt;
}
inline int find(int lt,int rt){
int id=0,val;
for(int i=lt;i<=rt;++i){
val=sd[i]-'a';
if(!trie[id].tr[val])return 0;
id=trie[id].tr[val];
}
return trie[id].opt;
}
inline void mian(){
ans1=0;ans2=INF;
trie[0].clear();
memset(tri,-1,sizeof(tri));
memset(f,INF,sizeof(f));
for(int i=1;i<=n;++i){
scanf("%s",sw);m=strlen(sw);
mlth=max(m,mlth);
if(sw[0]=='n')insert(sw,m,1);
else if(sw[0]=='v')insert(sw,m,2);
else if(sw[0]=='a')insert(sw,m,4);
}
scanf("%s",sd+1);m=strlen(sd+1)-1;
f[0][0][0]=0;
for(int lin=1;lin<=m;++lin){
int now=op^1,pre=op;
for(int i=1;i<=m;++i){
memset(f[now][i],INF,sizeof(f[now][i]));
int lim=max(i-mlth,0);
for(int j=i-1;j>=lim;--j){
if(tri[j+1][i-j]==-1)
tri[j+1][i-j]=find(j+1,i);
int opti=tri[j+1][i-j],nowi,prei;
if(opti&1){
nowi=min(f[now][j][1],f[now][j][3]);
prei=min(f[pre][j][0],f[pre][j][2]);
f[now][i][0]=min(f[now][i][0],nowi+1);
f[now][i][0]=min(f[now][i][0],prei+1);
}//不能有else
if(opti&2){
nowi=min(f[now][j][0],f[now][j][2]);
f[now][i][1]=min(f[now][i][1],nowi+1);
}//不能有else
if(opti&4){
nowi=min(f[now][j][0],f[now][j][2]);
f[now][i][2]=min(f[now][i][2],nowi+1); nowi=min(f[now][j][1],f[now][j][3]);
prei=min(f[pre][j][0],f[pre][j][1]);
f[now][i][3]=min(f[now][i][3],nowi+1);
f[now][i][3]=min(f[now][i][3],prei+1);
}//不能有else
}
}
ans2=min(f[now][m][0],f[now][m][1]);
if(ans2!=INF){ans1=lin;break;}
op^=1;
}
printf("%d\n%d\n",ans1,ans2);
}
int main(){
n=read();
mian();
return 0;
}

[NOI2000] 古城之谜的更多相关文章

  1. hdu4843(NOI2000) 古城之谜 (trie树+DP)

    Description 著名的考古学家石教授在云梦高原上发现了一处古代城市遗址.让教授欣喜的是在这个他称为冰峰城(Ice-Peak City)的城市中有12块巨大石碑,上面刻着用某种文字书写的资料,他 ...

  2. dp式子100个……

    1.        资源问题1-----机器分配问题F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.        资源问题2------01背包问题F[I,j]:=max(f[i- ...

  3. dp方程

    1.        资源问题1 -----机器分配问题 F[I,j]:=max(f[i-1,k]+w[i,j-k]) 2.        资源问题2 ------01背包问题   F[I,j]:=ma ...

  4. pythonchallenge 解谜 Level 0

    解谜地址: http://www.pythonchallenge.com/pc/def/0.html 这题没什么难度,意思就是得到2的38次方的值,然后,替换 http://www.pythoncha ...

  5. pythonchallenge 解谜

    所有代码均使用python 3.5.1 版本 最近在学python,闲来无事觉得这个解谜还挺有意思. 解谜网址  http://www.pythonchallenge.com/ 接下来会写破解教程~

  6. 揭秘JavaScript中谜一样的this

      揭秘JavaScript中谜一样的this 在这篇文章里我想阐明JavaScript中的this,希望对你理解this的工作机制有一些帮助.作为JavaScript程序员学习this对于你的发展有 ...

  7. Activity的"singleTask"之谜

    官方文档称 以这种方式启动的Activity总是属于一个任务的根Activity.果真如此吗?本文将为你解开Activity的"singleTask"之谜. 任务(Task)是个什 ...

  8. Microsoft HoloLens 技术解谜(下)

    读者提问之“HoloLens 的深度传感器有没有可能是基于 TOF?” 先介绍下背景知识,市面上常见的有三种类型的深度传感器: 结构光,这个技术的代表产品是 Kinect 一代,它的传感器芯片用的是 ...

  9. 揭开Linux操作系统的Swap交换区之谜

    揭开Linux操作系统的Swap交换区之谜 Swap,即交换区,除了安装Linux的时候,有多少人关心过它呢?其实,Swap的调整对Linux服务器,特别是Web服务器的性能至关重要.通过调整Swap ...

随机推荐

  1. Linux(CentOS7)下Nginx安装

    记录一下 Linux(CentOS7) 下 Nginx 安装过程 一.准备工作 版本说明: Linux版本:CentOS 7 64位 Nginx版本:nginx-1.20.0 1. 下载安装文件 采用 ...

  2. Java读取SQL server数据库

    要打开SQL server 的三个服务,然后再执行代码. package com.sql; import java.sql.SQLException; import java.sql.Statemen ...

  3. 安装Keras出现的问题

    先是pip install tensorflow  给装好了,但是pip install  keras出现如下的问题: 只好搜帖子,参考如下的帖子,我直接 conda install keras wi ...

  4. 201871030138-杨蕊媛 实验二 个人项目—《D{0-1}背包问题》项目报告

    项目 内容 课程班级博客链接 https://edu.cnblogs.com/campus/xbsf/2018CST 这个作业要求链接 https://www.cnblogs.com/nwnu-dai ...

  5. NVIDIA安培架构

    NVIDIA安培架构 NVIDIA Ampere Architecture In-Depth 在2020年英伟达GTC主题演讲中,英伟达创始人兼首席执行官黄仁勋介绍了基于新英伟达安培GPU架构的新英伟 ...

  6. Ucore lab1实验报告

    练习一 Makefile 1.1 OS镜像文件ucore.img 是如何一步步生成的? + cc kern/init/init.c + cc kern/libs/readline.c + cc ker ...

  7. 【NX二次开发】镜像对象

    使用uf5946获取镜像矩阵注意:uf5946镜像这个函数,只能用#define UF_plane_type=46这种类型的数据作为镜像面,不能用#define UF_datum_plane_type ...

  8. 【C++】Vector排序

    1.普通类型(由大到小排序) int main() { sort(v.begin(),v.end()); } 2.普通类型(由小到大排序) bool comp(const int &a,con ...

  9. 『动善时』JMeter基础 — 45、脚本录制工具Badboy介绍

    目录 1.Badboy软件介绍 2.Badboy下载 3.Badboy安装 4.Badboy界面介绍 (1)菜单栏: (2)工具栏: (3)左下角界面视图: 1.Badboy软件介绍 Badboy是一 ...

  10. 会点自动化就要25k? 现在年轻人这么浮躁吗

    面试中一问元素定位就对答如流.一问实际项目框架如何搭建就避重就轻.含糊其辞,这样的自动化实战能力也能拿25K?静待下文: 一.为什么现在自动化测试工资那么高呢? 结合现在的职场环境与企业用人需求,自动 ...