BZOJ_1008 越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008
Description
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果
相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
Input
输入两个整数M,N.1<=M<=10^8,1<=N<=10^12
Output
可能越狱的状态数,模100003取余
Sample Input
Sample Output
HINT
6种状态为(000)(001)(011)(100)(110)(111)
从题目里可以知道,N个房间M个宗教,可能产生的所有状态为A=N^M,要求出所有可能越狱的状态可能比较难,不如使用逆向思维,求所有不可能的越狱状态,可知只要相邻的房间宗教不同即可,故所有的不可能越狱状态为B=M*(M-1)*(M-1)...(M-1)=M*(M-1)^(N-1),那么答案就是A-B了,写个快速幂函数求出A,B即可。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
/*ll quickpower(ll m,ll n)//简写版本
{
if(n==0) return 1;
ll temp=quickpower(m,n>>1);// n>>1 == n/2 n的二进制右移几位就是除以2的n次方
temp=temp*temp%100003;
if(n&1) temp=temp*m%100003;// n&1也就是取n的二进制最低位,判断n是否为奇数,是则为1
return temp%100003;
}*/
ll quickpower(ll m,ll n)//更容易看懂的版本
{
if(n==0) return 1;
else
{
while((n&1)==0)
{
n>>=1;
m=m*m%100003;
}
}
int temp=m;
n>>=1;
while(n!=0)
{
m=m*m%100003;
if((n&1)!=0) temp=temp*m%100003;
n>>=1;
}
return temp;
}
int main()
{
ll m,n;
cin>>m>>n;
m%=100003;
ll ans=quickpower(m,n);
ans-=(m*quickpower(m-1,n-1))%100003;
cout<<(ans+100003)%100003<<endl;
return 0;
}
BZOJ_1008 越狱(快速幂)的更多相关文章
- [HNOI2008] 越狱 快速幂
[HNOI2008] 越狱 快速幂 水.考虑不发生越狱的情况:即宗教相同的都不相邻,一号任意放\(m\)种宗教的人,此后\(n-1\)个房间都放与上一个宗教不同的人,有\(m-1\)种,所以共有\(m ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ1008 [HNOI2008]越狱 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...
- BZOJ 1008: [HNOI2008]越狱-快速幂/取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- BZOJ 1008: [HNOI2008]越狱 快速幂
1008: [HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生 ...
- bzoj1008/luogu3197 越狱 (快速幂)
算$m^n-m*(m-1)^{n-1}$,就是总的减去不越狱的,不越狱就每次都选一个和上一个不一样的
- bzoj1008 [HNOI2008]越狱——快速幂
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1008 (这样一道水题还因为忘记写 %lld WA了那么多遍) 发生越狱的状态数,就是全部状态 ...
- [HNOI2008]越狱 快速幂 逆推
考虑越狱的情况有些复杂,不如考虑总情况减去不越狱的情况. 显然,总情况为 $m^n$ 种,不越狱的情况为 $m*(m-1)*(m-1)*(m-1)....$ 即为 $m*(m-1)^(n-1)$. 做 ...
- BZOJ-1008 越狱 数论快速幂
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MB Submit: 6192 Solved: 2636 [Submit][Status] ...
- 【BZOJ】1008: [HNOI2008]越狱(快速幂)
http://www.lydsy.com/JudgeOnline/problem.php?id=1008 刚开始看不会做啊,以为是dp,但是数据太大!!!所以一定有log的算法或者O1的算法,,,,还 ...
随机推荐
- 普通类中获取spring容器中的javabean对象
spring提供了一系列的*Aware 接口,用于获取相应的对象,进行一系列的对象设置操作,此处实现ApplicationContextAware来获取ApplicationContext. 其他Aw ...
- Redisson实战-BloomFilter
1. 简介 布隆过滤器是防止缓存穿透的方案之一.布隆过滤器主要是解决大规模数据下不需要精确过滤的业务场景,如检查垃圾邮件地址,爬虫URL地址去重, 解决缓存穿透问题等. 布隆过滤器:在一个存在一定数量 ...
- SQL 练习6
查询在 SC 表存在成绩的学生信息 SELECT * from Student WHERE SId in (SELECT SId from SC)
- Nginx-出现-403-Forbidden
步骤一: 检查目录权限.权限不足的就加个权限吧. 例子:chmod -R 755 / var/www 步骤二: 打开nginx.conf 例子:vim /etc/nginx/nginx.conf 把 ...
- C# 简单的对称加密
const string KEY_64 = "HuidTeac";//注意了,是8个字符 const string IV_64 = "HuidTeac"; pu ...
- vsftpd - FTP 服务器安装
由于要将本地程序上传至云服务器中,所以需要给云服务器端安装ftp服务器.记录一下ftp的安装过程,以便以后使用.服务器端所用系统为Ubuntu16.04. 1. 安装ftp服务器, apt-get i ...
- (二)js基础。。。freecodecamp笔记
个人需要注意的点 当 JavaScript 中的变量被声明的时候,程序内部会给它一个初始值undefined.当你对一个值为undefined的变量进行运算操作的时候,算出来的结果将会是NaN,NaN ...
- 多线程编程<五>
1 /** 2 * 中断线程:当线程由于调用sleep(),join(),wait()而暂停时,如果中断它,则会收到一个InterruptedException异常. 3 * 调用Thread.isI ...
- 微信小程序学习笔记五 常见组件
1. 常见组件 重点讲解小程序中常用的布局组件 1.1 view 代替 原来的div标签 <!-- pages/index/index.wxml --> <view hover-cl ...
- py2neo学习记录
py2neo 通用 # -*- coding: UTF-8 -*- from py2neo import Graph, Node, Relationship, walk, NodeMatcher, R ...