Jiang Z., Chen T., Chen T. & Wang Z. Robust Pre-Training by Adversarial Contrastive Learning. NIPS, 2020.

本文介绍了一种利用对比学习进行对抗预训练的方法.

主要内容

思想是很简单的, 就是利用对比学习进行训练(样本的augumentation多一个\(\delta\)), 然后再通过此方法训练得到的参数进行finetune.

比较特别的是, 有三种预训练的方案:

  1. Adversarial-to-Adversarial (A2A): 即样本对均加了对抗扰动\((\tilde{x}_i+\delta_i, \tilde{x}_j + \delta_j)\);
  2. Adversarial-to-Standard (A2S):\((\tilde{x}_i+\delta_i, \tilde{x}_j)\);
  3. Dual Stream (DS): 作者在实验中发现, 单独使用A2A, 侵略性太强, 故采取了一种中和的方法, 即同时加上Standard-to-Standard (S2S)的损失.

实验结果也显示, DS的效果是最好的, 即

\[\ell = \ell_{NT} (f \circ g(\tilde{x}_i, \tilde{x}_j; \theta, \theta_{bn}))+ \alpha \cdot \ell_{NT}(f \circ g (\tilde{x}_i +\delta_i, \tilde{x}_j +\delta_j, \theta_{bn^{adv}})),
\]

需要注意的是\(\theta_{bn}, \theta_{bn^{adv}}\), 因为作者作者发现(其实之前便有文章指出过这个问题了), 如果对抗样本和普通样本使用的是同一个batchnorm, 最后结果会变差, 所以作者训练DS或者A2S的时候, 都是使用两个独立的BN的.

本文还有一些在半监督下的分析, 这里就不多赘述了.

代码

原文代码

Robust Pre-Training by Adversarial Contrastive Learning的更多相关文章

  1. Feature Distillation With Guided Adversarial Contrastive Learning

    目录 概 主要内容 reweight 拟合概率 实验的细节 疑问 Bai T., Chen J., Zhao J., Wen B., Jiang X., Kot A. Feature Distilla ...

  2. 谣言检测(GACL)《Rumor Detection on Social Media with Graph Adversarial Contrastive Learning》

    论文信息 论文标题:Rumor Detection on Social Media with Graph AdversarialContrastive Learning论文作者:Tiening Sun ...

  3. Adversarial Self-Supervised Contrastive Learning

    目录 概 主要内容 Linear Part 代码 Kim M., Tack J. & Hwang S. Adversarial Self-Supervised Contrastive Lear ...

  4. 谣言检测(RDCL)——《Towards Robust False Information Detection on Social Networks with Contrastive Learning》

    论文信息 论文标题:Towards Robust False Information Detection on Social Networks with Contrastive Learning论文作 ...

  5. 论文解读(GROC)《Towards Robust Graph Contrastive Learning》

    论文信息 论文标题:Towards Robust Graph Contrastive Learning论文作者:Nikola Jovanović, Zhao Meng, Lukas Faber, Ro ...

  6. ICLR2021对比学习(Contrastive Learning)NLP领域论文进展梳理

    本文首发于微信公众号「对白的算法屋」,来一起学AI叭 大家好,卷王们and懂王们好,我是对白. 本次我挑选了ICLR2021中NLP领域下的六篇文章进行解读,包含了文本生成.自然语言理解.预训练语言模 ...

  7. 论文解读(PCL)《Prototypical Contrastive Learning of Unsupervised Representations》

    论文标题:Prototypical Contrastive Learning of Unsupervised Representations 论文方向:图像领域,提出原型对比学习,效果远超MoCo和S ...

  8. A Simple Framework for Contrastive Learning of Visual Representations

    目录 概 主要内容 流程 projection head g constractive loss augmentation other 代码 Chen T., Kornblith S., Norouz ...

  9. 论文解读(SimGRACE)《SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation》

    论文信息 论文标题:SimGRACE: A Simple Framework for Graph Contrastive Learning without Data Augmentation论文作者: ...

随机推荐

  1. Hive(十三)【Hive on Spark 部署搭建】

    Hive on Spark 官网详情:https://cwiki.apache.org//confluence/display/Hive/Hive+on+Spark:+Getting+Started ...

  2. recyclerView DiffUtil使用

    DiffUtil是和RecyclerView一块用的,DiffUtil用来比较两个数据集,他的最大用处是在RecyclerView刷新时,不在无脑. 以前adapter.notifyDataSetCh ...

  3. Simulating final class in C++

    Ever wondered how can you design a class in C++ which can't be inherited. Java and C# programming la ...

  4. SpringMVC注解详情

    @Component.@Repository @Service.@Controller 看字面含义,很容易却别出其中三个: @Controller 控制层,就是我们的action层 @Service ...

  5. 【Service】【Database】【MySQL】基础

    1. 概念 1.1. 作者:Unireg 1.2. MySQL AB --> MySQL Solaris:二进制版本: 1.3. 官方网站: MySQL: www.mysql.com Maria ...

  6. html标签设置contenteditable时,去除粘贴文本自带样式

    在一个div标签里面加了可编辑的属性,从别的地方复制了一串文本,只想把文本内容存到接口里面,结果发现文本自带的标签和样式都会存进去. $(".session-new-name"). ...

  7. .net 5 开发部署B/S程序。

    现在.net 6 已经出来了,visualStudio 2022也发行预览版了. 自 .net5 发布,.net core 与.net framework 已经走向统一.确实越来越好用了. 现在.ne ...

  8. Linux下安装数据库sqlite3

    目录 一.简介 二.安装 三.测试 一.简介 SQLite 是一个软件库,实现了自给自足的.无服务器的.零配置的.事务性的 SQL 数据库引擎.SQLite 是在世界上最广泛部署的 SQL 数据库引擎 ...

  9. shell脚本 批量查看mysql表条目数

    一.简介 源码地址 日期:2018/4/12 介绍:查看mysql的信息,用于比对和查询条目数 效果图: 二.使用 适用:centos6+ 语言:中文 注意:适用于5.7版本,其它版本要更改变量han ...

  10. Nginx模块之nginx_upstream_check_module

    目录 一.介绍 二.使用 三.参数 一.介绍 大家都知道,前端nginx做反代,如果后端服务器宕掉的话,nginx是不能把这台realserver剔除upstream的,所以还会有请求转发到后端的这台 ...