CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models
概
隐变量的因果表示.
主要内容
我们通常希望隐变量\(z\)能够表示一些特别的特征, 通过改变\(z\)使得生成的图形某些属性发生相应的变换, 但是这种设定的方式并不具备因果的关系, 比方说
这个摆锤, 其隐变量\(z\)是光照, 摆锤的角度, 影子的长短.
我们可以改变摆锤的角度, 一般的生成模型摆锤的角度变了, 但是光照和影子长短没有发生变化, 实际上由于摆锤角度的变化, 对于的隐变量:影子的长短也应该发生相应的变化以满足物理的规律. 如何把这些因果关系融入到普通的VAE中是本文的独到之处.
模型
Encoder 部分:
\]
\(\epsilon\)可以看成是一个临时的隐变量;
\]
Decoder部分:
\]
这一部分是重构\(z\), 正是这一步的存在使得我们能够干预\(z_i\)使得其它的\(z_j\)也发生相应的改变.
\]
联合分布为:
p_{\theta}(x|z,\epsilon,u) = p_{\theta}(x|z) = p_{\xi}(x-f(z)), \\
p_{\theta}(\epsilon,z|u) = p_{\epsilon}(\epsilon) p_{\theta}(z|u), \quad p_{\epsilon}(\epsilon) = \mathcal{N}(0, I), \\
p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|u_i), \quad p_{\theta}(z_i|u_i) = \mathcal{N}(\lambda_1(u_i), \lambda_2^2(\mu_i)).
\]
估计的后验分布为:
q(z|\epsilon) = \delta (z=(I-A)^{-1}\epsilon).
\]
注: \(z, u, \epsilon \in \mathbb{R}^n, x \in \mathbb{R}^d.\)
ELBO
由此可以推出ELBO:
\]
由于\(p(z|\epsilon) = \delta(z=(I-A)^{-1}\epsilon)\), 所以上式可以进一步化为:
\]
关于\(A\)
正如在这儿所论述的, \(A\)需要对应一个有向无环图, 本文采取的策略是:
\]
这里\(c\)是任意正数.
同时为了满足\(z\)重构, 需要以下条件满足:
\]
注: 这里\(z_i\)是重构前的.
特别的, 为了更好地用额外信息(不是很认同, 感觉得看实际情况吧):
\]
所以最终的损失为:
\]
注: 本文不像别的方法一样用augmented Lagrange 求解.
注: 作者设计的实验实在是非常有趣.
CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models的更多相关文章
- 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》
论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...
- Self-Supervised Representation Learning
Self-Supervised Representation Learning 2019-11-11 21:12:14 This blog is copied from: https://lilia ...
- (转)Predictive learning vs. representation learning 预测学习 与 表示学习
Predictive learning vs. representation learning 预测学习 与 表示学习 When you take a machine learning class, ...
- 翻译 Improved Word Representation Learning with Sememes
翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...
- 论文阅读笔记 Improved Word Representation Learning with Sememes
论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...
- 【论文笔记】Learning Convolutional Neural Networks for Graphs
Learning Convolutional Neural Networks for Graphs 2018-01-17 21:41:57 [Introduction] 这篇 paper 是发表在 ...
- (zhuan) Notes on Representation Learning
this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/ Notes on Repr ...
- 网络表示学习Network Representation Learning/Embedding
网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工 ...
- Machine Learning:Neural Network---Representation
Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...
随机推荐
- HDFS04 HDFS的读写流程
HDFS的读写流程(面试重点) 目录 HDFS的读写流程(面试重点) HDFS写数据流程 网络拓扑-节点距离计算 机架感知(副本存储节点的选择) HDFS的读数据流程 HDFS写数据流程 客服端把D: ...
- 日常Java 2021/10/25
ArrayList存储数字 import java.util.ArrayList; public class Arr_test { public static void main(String[] a ...
- 学习java 7.17
学习内容: 计算机网络 网络编程 网络编程三要素 IP地址 端口 协议 两类IP地址 IP常用命令: ipconfig 查看本机IP地址 ping IP地址 检查网络是否连通 特殊IP地址: 127. ...
- Redis | 第11章 服务器的复制《Redis设计与实现》
目录 前言 1. 旧版复制功能的实现 1.1 同步与命令传播 1.2 旧版复制功能的缺陷 2. 新版复制功能的实现 2.1 部分重同步的实现原理 3. PSYNC 命令的实现 4. 复制的详细步骤 4 ...
- 虚拟机中安装centos系统的详细过程
linux-centos的安装 检查电脑是否开启虚拟化,只有开启虚拟化才能安装虚拟机 新建虚拟机 鼠标点进去,选中红框所示,回车 登录: 输入默认用户名(超级管理员 root) 密码:安装时设置的密码
- list通过比较器进行排序
Collections.sort(dataList,new Comparator<BaseTransitData>(){ public int compare(Bas ...
- 【Java 基础】Java日期格式问题
1. Use SimpleDateFormat to format Date. Watch out, SDF is NOT THREAD-SAFE, it might not be important ...
- 【JAVA今法修真】 第二章 一气化三清 线程分心念
这是我的微信公众号,希望有兴趣的朋友能够一起交流,也希望能够多多支持新人作者,你的每一份关注都是我写文章的动力:南橘ryc 天有八纪,地分九州,万法仙门与天道剑宗一并坐落在东北方通辽州. 与李小庚想象 ...
- numpy基础教程--浅拷贝和深拷贝
在numpy中,使用等号(=)直接赋值返回的是一个视图,属于浅拷贝:要完整的拷贝一个numpy.ndarray类型的数据的话,只能调用copy()函数 # coding = utf-8 import ...
- 9、Redis五大数据类型---有序集合Zset(sorted set)
一.简介 zset与set异同 相同之处: 都是没有重复元素的字符串集合 不同之处: 有序集合zset的每个成员都关联了一个评分(score),这个评分(score)被用来按照从最低分到最高分的方式排 ...