Yang M., Liu F., Chen Z., Shen X., Hao J. and Wang J. CausalVAE: disentangled representation learning via neural structural causal models. arXiv preprint arXiv:2004.086975, 2020.

隐变量的因果表示.

主要内容

我们通常希望隐变量\(z\)能够表示一些特别的特征, 通过改变\(z\)使得生成的图形某些属性发生相应的变换, 但是这种设定的方式并不具备因果的关系, 比方说

这个摆锤, 其隐变量\(z\)是光照, 摆锤的角度, 影子的长短.

我们可以改变摆锤的角度, 一般的生成模型摆锤的角度变了, 但是光照和影子长短没有发生变化, 实际上由于摆锤角度的变化, 对于的隐变量:影子的长短也应该发生相应的变化以满足物理的规律. 如何把这些因果关系融入到普通的VAE中是本文的独到之处.

模型

Encoder 部分:

\[\epsilon = h(x, u) + \zeta,
\]

\(\epsilon\)可以看成是一个临时的隐变量;

\[z = (I - A)^{-1} \epsilon.
\]

Decoder部分:

\[z_i = g_i(A_i \circ z) + \epsilon_i,
\]

这一部分是重构\(z\), 正是这一步的存在使得我们能够干预\(z_i\)使得其它的\(z_j\)也发生相应的改变.

\[x = f(z) + \xi.
\]

联合分布为:

\[p_{\theta}(x, z, \epsilon|u) = p_{\theta}(x|z, \epsilon, u)p_{\theta}(\epsilon, z|u), \\
p_{\theta}(x|z,\epsilon,u) = p_{\theta}(x|z) = p_{\xi}(x-f(z)), \\
p_{\theta}(\epsilon,z|u) = p_{\epsilon}(\epsilon) p_{\theta}(z|u), \quad p_{\epsilon}(\epsilon) = \mathcal{N}(0, I), \\
p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|u_i), \quad p_{\theta}(z_i|u_i) = \mathcal{N}(\lambda_1(u_i), \lambda_2^2(\mu_i)).
\]

估计的后验分布为:

\[q_{\phi}(z, \epsilon|x, u) = q(z|\epsilon)q_{\zeta}(\epsilon - h(x, u)), \\
q(z|\epsilon) = \delta (z=(I-A)^{-1}\epsilon).
\]

注: \(z, u, \epsilon \in \mathbb{R}^n, x \in \mathbb{R}^d.\)

ELBO

由此可以推出ELBO:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{\epsilon, z\sim q_{\phi}}[\log p_{\theta}(x| z, \epsilon,u)] - \mathbb{D}(q_{\phi}(\epsilon, z|x, u))\| p_{\theta}(\epsilon, z|u)].
\]

由于\(p(z|\epsilon) = \delta(z=(I-A)^{-1}\epsilon)\), 所以上式可以进一步化为:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{q_{\phi(z|x,u)}}[\log p_{\theta}(x|z)] - \mathbb{D}(q_{\phi}(\epsilon|x,u)\|p_{\epsilon}(\epsilon))-\mathbb{D}(q_{\phi}(z|x,u)\|p_{\theta}(z|u))]+\mathrm{const}.
\]

关于\(A\)

正如在这儿所论述的, \(A\)需要对应一个有向无环图, 本文采取的策略是:

\[H(A) = \mathrm{tr}((I+\frac{c}{n}A \circ A)^n) - n =0,
\]

这里\(c\)是任意正数.

同时为了满足\(z\)重构, 需要以下条件满足:

\[l_m = \mathbb{E}_{q_{\phi}} \sum_{i=1}^n \|z_i-g_i(A_i \circ z)\|^2 \le \kappa_2,
\]

注: 这里\(z_i\)是重构前的.

特别的, 为了更好地用额外信息(不是很认同, 感觉得看实际情况吧):

\[l_u = \mathbb{E}_{q_{\mathcal{X}}} \|u - \sigma(A^Tu)\|_2^2 \le \kappa_1,
\]

所以最终的损失为:

\[\mathcal{L} = -\mathrm{ELBO} +\alpha H(A) + \beta l_u + \gamma l_m,
\]

注: 本文不像别的方法一样用augmented Lagrange 求解.

注: 作者设计的实验实在是非常有趣.

CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models的更多相关文章

  1. 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》

    论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...

  2. Self-Supervised Representation Learning

    Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilia ...

  3. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  4. 翻译 Improved Word Representation Learning with Sememes

    翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...

  5. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  6. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  7. (zhuan) Notes on Representation Learning

    this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/   Notes on Repr ...

  8. 网络表示学习Network Representation Learning/Embedding

    网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工 ...

  9. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

随机推荐

  1. 日常Java 2021/9/28

    字符串反转 package m; public class m { public static void main(String[] args) { //定义一个字符串 String str = &q ...

  2. Identity Server 4 从入门到落地(七)—— 控制台客户端

    前面的部分: Identity Server 4 从入门到落地(一)-- 从IdentityServer4.Admin开始 Identity Server 4 从入门到落地(二)-- 理解授权码模式 ...

  3. 在JTable单元格上 加入组件,并赋予可编辑能力 [转]

    表格(单元格放置组件) 对于JTable单元格的渲染主要是通过两个接口来实现的,一个是TableCellRenderer另一个是TableCellEditor,JTable默认是用的是DefaultC ...

  4. k8s配置中心-configmap,Secret密码

    目录 k8s配置中心-configmap,Secret 创建ConfigMap 使用ConfigMap subPath参数 Secret 官方文档 编写secret清单 使用secret 在 Pod ...

  5. 案例 stm32单片机,adc的双通道+dma 内部温度

    可以这样理解 先配置adc :有几个通道就配置几个通道. 然后配置dma,dma是针对adc的,而不是针对通道的. 一开始我以为一个adc通道对应一个dma通道.(这里是错的,其实是我想复杂了) 一个 ...

  6. C++ 之杂记

    今天做了一个题,代码不难,但是编译的时候就恼火,老是报错,也不告诉我错哪了.... 之前的代码是这样的,在main函数中调用这个类的构造函数,就一直报错,但是不知道原因,后来加上了const 就好了. ...

  7. 利用extern共享全局变量

    方法: 在xxx.h中利用extern关键字声明全局变量 extern int a; 在xxx.cpp中#include<xxx.h> 再定义 int a; 赋不赋初值无所谓,之后该全局变 ...

  8. 虚机扩大容量与vm减少所占容量

    Linux的虚拟机碎片整理 sudo dd if=/dev/zero of=/free bs=1M sudo rm -f /free 镜像压缩 移动镜像 VBoxManage internalcomm ...

  9. vue 第三方图标库

    "font-awesome": "^4.7.0", "dependencies": { "axios": "^ ...

  10. Servlet(3):Cookie和Session

    一. Cookie Cookie是客户端技术,程序把每个用户的数据以cookie的形式写给用户各自的浏览器.当用户使用浏览器再去访问服务器中的web资源时,就会带着各自的数据去.这样,web资源处理的 ...