Yang M., Liu F., Chen Z., Shen X., Hao J. and Wang J. CausalVAE: disentangled representation learning via neural structural causal models. arXiv preprint arXiv:2004.086975, 2020.

隐变量的因果表示.

主要内容

我们通常希望隐变量\(z\)能够表示一些特别的特征, 通过改变\(z\)使得生成的图形某些属性发生相应的变换, 但是这种设定的方式并不具备因果的关系, 比方说

这个摆锤, 其隐变量\(z\)是光照, 摆锤的角度, 影子的长短.

我们可以改变摆锤的角度, 一般的生成模型摆锤的角度变了, 但是光照和影子长短没有发生变化, 实际上由于摆锤角度的变化, 对于的隐变量:影子的长短也应该发生相应的变化以满足物理的规律. 如何把这些因果关系融入到普通的VAE中是本文的独到之处.

模型

Encoder 部分:

\[\epsilon = h(x, u) + \zeta,
\]

\(\epsilon\)可以看成是一个临时的隐变量;

\[z = (I - A)^{-1} \epsilon.
\]

Decoder部分:

\[z_i = g_i(A_i \circ z) + \epsilon_i,
\]

这一部分是重构\(z\), 正是这一步的存在使得我们能够干预\(z_i\)使得其它的\(z_j\)也发生相应的改变.

\[x = f(z) + \xi.
\]

联合分布为:

\[p_{\theta}(x, z, \epsilon|u) = p_{\theta}(x|z, \epsilon, u)p_{\theta}(\epsilon, z|u), \\
p_{\theta}(x|z,\epsilon,u) = p_{\theta}(x|z) = p_{\xi}(x-f(z)), \\
p_{\theta}(\epsilon,z|u) = p_{\epsilon}(\epsilon) p_{\theta}(z|u), \quad p_{\epsilon}(\epsilon) = \mathcal{N}(0, I), \\
p_{\theta}(z|u) = \prod_{i=1}^n p_{\theta}(z_i|u_i), \quad p_{\theta}(z_i|u_i) = \mathcal{N}(\lambda_1(u_i), \lambda_2^2(\mu_i)).
\]

估计的后验分布为:

\[q_{\phi}(z, \epsilon|x, u) = q(z|\epsilon)q_{\zeta}(\epsilon - h(x, u)), \\
q(z|\epsilon) = \delta (z=(I-A)^{-1}\epsilon).
\]

注: \(z, u, \epsilon \in \mathbb{R}^n, x \in \mathbb{R}^d.\)

ELBO

由此可以推出ELBO:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{\epsilon, z\sim q_{\phi}}[\log p_{\theta}(x| z, \epsilon,u)] - \mathbb{D}(q_{\phi}(\epsilon, z|x, u))\| p_{\theta}(\epsilon, z|u)].
\]

由于\(p(z|\epsilon) = \delta(z=(I-A)^{-1}\epsilon)\), 所以上式可以进一步化为:

\[\mathbb{E}_{q_{\mathcal{X}}}[\mathbb{E}_{q_{\phi(z|x,u)}}[\log p_{\theta}(x|z)] - \mathbb{D}(q_{\phi}(\epsilon|x,u)\|p_{\epsilon}(\epsilon))-\mathbb{D}(q_{\phi}(z|x,u)\|p_{\theta}(z|u))]+\mathrm{const}.
\]

关于\(A\)

正如在这儿所论述的, \(A\)需要对应一个有向无环图, 本文采取的策略是:

\[H(A) = \mathrm{tr}((I+\frac{c}{n}A \circ A)^n) - n =0,
\]

这里\(c\)是任意正数.

同时为了满足\(z\)重构, 需要以下条件满足:

\[l_m = \mathbb{E}_{q_{\phi}} \sum_{i=1}^n \|z_i-g_i(A_i \circ z)\|^2 \le \kappa_2,
\]

注: 这里\(z_i\)是重构前的.

特别的, 为了更好地用额外信息(不是很认同, 感觉得看实际情况吧):

\[l_u = \mathbb{E}_{q_{\mathcal{X}}} \|u - \sigma(A^Tu)\|_2^2 \le \kappa_1,
\]

所以最终的损失为:

\[\mathcal{L} = -\mathrm{ELBO} +\alpha H(A) + \beta l_u + \gamma l_m,
\]

注: 本文不像别的方法一样用augmented Lagrange 求解.

注: 作者设计的实验实在是非常有趣.

CausalVAE: Disentangled Representation Learning via Neural Structural Causal Models的更多相关文章

  1. 论文解读(S^3-CL)《Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learning》

    论文信息 论文标题:Structural and Semantic Contrastive Learning for Self-supervised Node Representation Learn ...

  2. Self-Supervised Representation Learning

    Self-Supervised Representation Learning 2019-11-11 21:12:14  This blog is copied from: https://lilia ...

  3. (转)Predictive learning vs. representation learning 预测学习 与 表示学习

    Predictive learning vs. representation learning  预测学习 与 表示学习 When you take a machine learning class, ...

  4. 翻译 Improved Word Representation Learning with Sememes

    翻译 Improved Word Representation Learning with Sememes 题目 Improved Word Representation Learning with ...

  5. 论文阅读笔记 Improved Word Representation Learning with Sememes

    论文阅读笔记 Improved Word Representation Learning with Sememes 一句话概括本文工作 使用词汇资源--知网--来提升词嵌入的表征能力,并提出了三种基于 ...

  6. 【论文笔记】Learning Convolutional Neural Networks for Graphs

    Learning Convolutional Neural Networks for Graphs 2018-01-17  21:41:57 [Introduction] 这篇 paper 是发表在 ...

  7. (zhuan) Notes on Representation Learning

    this blog from: https://opendatascience.com/blog/notes-on-representation-learning-1/   Notes on Repr ...

  8. 网络表示学习Network Representation Learning/Embedding

    网络表示学习相关资料 网络表示学习(network representation learning,NRL),也被称为图嵌入方法(graph embedding method,GEM)是这两年兴起的工 ...

  9. Machine Learning:Neural Network---Representation

    Machine Learning:Neural Network---Representation 1.Non-Linear Classification 假设还採取简单的线性分类手段.那么会面临着过拟 ...

随机推荐

  1. C/C++ Qt 数据库与ComBox多级联动

    Qt中的SQL数据库组件可以与ComBox组件形成多级联动效果,在日常开发中多级联动效果应用非常广泛,例如当我们选择指定用户时,我们让其在另一个ComBox组件中列举出该用户所维护的主机列表,又或者当 ...

  2. Kafka入门教程(一)

    转自:https://blog.csdn.net/yuan_xw/article/details/51210954 1 Kafka入门教程 1.1 消息队列(Message Queue) Messag ...

  3. 【c++】解析多文件编程的原理

    其实一直搞不懂为什么头文件和其他cpp文件之间的关系,今晚索性一下整明白 [c++]解析多文件编程的原理 a.cpp #include<stdio.h> int main(){ a(); ...

  4. 【vector的输出问题】 洛谷 P1996 约瑟夫问题

    题目:P1996 约瑟夫问题 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 可恶啊,本来是一道不算难的题,硬是因为cin,cout同步流卡了我一天qwq 关闭cin,cout同步流 ...

  5. Java——数组的定义与使用

    数组的定义与使用 1.数组的基本概念 (1)数组的动态初始化: 数组首先先开辟内存空间,而后再使用索引进行内容的设置,这种定义数组的方式称为动态初始化 数组是引用数据类型,存在有内存分配问题.在使用前 ...

  6. iOS-调用系统的短信和发送邮件功能,实现短信分享和邮件分享

    一.邮件分享 1.iOS系统自带邮件设置邮箱(此处以QQ邮箱为例)(http://jingyan.baidu.com/album/6181c3e084cb7d152ef153b5.html?picin ...

  7. 【编程思想】【设计模式】【结构模式Structural】front_controller

    Python版 https://github.com/faif/python-patterns/blob/master/structural/front_controller.py #!/usr/bi ...

  8. Spring Boot下使用JSP页面

    一.创建webapp目录 在src/main下创建webapp目录,用于存放jsp文件.这就是一个普通的目录,无需执行Mark Directory As 二.创建jsp 1.指定web资源目录 在sp ...

  9. 【Linux】【Service】【OpenSSL】原理及实现

    1. 概念 1.1. SSL(Secure Sockets Layer安全层套接字)/TLS(Transport Layer Security传输层套接字). 最常见的应用是在网站安全方面,用于htt ...

  10. maven依赖对zookeeper的版本冲突问题

    我用的是springcloudAlibaba+zookeeper zookeeper下载后 1,修改配置文件,conf目录下的zoo_sample.cfg修改为zoo.cfg. 2,打开zoo.cfg ...